
PHYSICS REPORTS (Review SectIOn of Physics Letters) 55, No.3 (1979) 183-254. North-Holland Publishing Company

FOLDING MODEL POTENTIALS FROM REALISTIC INTERACTIONS
FOR HEAVY-ION SCATTERING

G.R. SATCHLER

Oak Ridge National Laboratory*, Oak Ridge, Tennessee 37830, U.S.A.

and

W.G. LOVE

Dept. of Physics and A.,tro/loIllY. L'/lit enitr of Georgia**. Athens. Georgia 30602, U.S.A.

Received April 1979

Contents:

I. Introduction
2. Heavy ion potentials
3. The model

3.1. Double-folded potentials
3.2. Single-folded potentials
3.3. The effective interaction
3.4. The nuclear densities
3.5. General features

4. Application to nucleon scattenng
5. Application to alpha scattering

5.1. The ex + ex interaction
5.2. The scattering of ex + 40Ca

6. Apphcations to heavy-ion scattenng
6.1. Procedure
6.2. The imaginary potential
6.3. PrevIOus results
6.4. Present results

Single orders for this issue

18~

186
188
188
189
190
196
200
203
206
206
206
207
207
210
211
211

7. Scattering of 6. 7Li and 9Be 224
7.1. Density distributions for Li nuclei 224
7.2. Results for 6Li scattering 227
7.3. The case of 6Li + 40Ca 227
7.4. Discussion 228
7.5. The 9Be nucleus 229

8. Inelastic scattering 233
8.1. Introduction 233
8.2. Applications 234
8.3. Discussion 238

9. Summary and discussion 241
Appendix A: Spin and isospin effects in folded potentials 243
Appendix B: Momentum-space representation 245
Appendix C: Density-dependent interactions 249
References 250

PHYSICS REPORTS (Review Section of Physics Letters) 55, No.3 (1979) 183-254.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must
be accompanied by check.

Single Issue pnce Dfl. 28.50, postage included.

* Research sponsored by the DiVision of Physical Research, U.S. Department of Energy under contract W-7405-eng-26 with the
Union Carbide CorporatIOn.

** Work supported in part by the National Science Foundation.

PHYSICS REPORTS (Review SectIOn of Physics Letters) 55, No.3 (1979) 183-254. North-Holland Publishing Company

FOLDING MODEL POTENTIALS FROM REALISTIC INTERACTIONS
FOR HEAVY-ION SCATTERING

G.R. SATCHLER

Oak Ridge National Laboratory*, Oak Ridge, Tennessee 37830, U.S.A.

and

W.G. LOVE

Dept. of Physics and A.,tro/loIllY. L'/lit enitr of Georgia**. Athens. Georgia 30602, U.S.A.

Received April 1979

Contents:

I. Introduction
2. Heavy ion potentials
3. The model

3.1. Double-folded potentials
3.2. Single-folded potentials
3.3. The effective interaction
3.4. The nuclear densities
3.5. General features

4. Application to nucleon scattenng
5. Application to alpha scattering

5.1. The ex + ex interaction
5.2. The scattering of ex + 40Ca

6. Apphcations to heavy-ion scattenng
6.1. Procedure
6.2. The imaginary potential
6.3. PrevIOus results
6.4. Present results

Single orders for this issue

18~

186
188
188
189
190
196
200
203
206
206
206
207
207
210
211
211

7. Scattering of 6. 7Li and 9Be 224
7.1. Density distributions for Li nuclei 224
7.2. Results for 6Li scattering 227
7.3. The case of 6Li + 40Ca 227
7.4. Discussion 228
7.5. The 9Be nucleus 229

8. Inelastic scattering 233
8.1. Introduction 233
8.2. Applications 234
8.3. Discussion 238

9. Summary and discussion 241
Appendix A: Spin and isospin effects in folded potentials 243
Appendix B: Momentum-space representation 245
Appendix C: Density-dependent interactions 249
References 250

PHYSICS REPORTS (Review Section of Physics Letters) 55, No.3 (1979) 183-254.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must
be accompanied by check.

Single Issue pnce Dfl. 28.50, postage included.

* Research sponsored by the DiVision of Physical Research, U.S. Department of Energy under contract W-7405-eng-26 with the
Union Carbide CorporatIOn.

** Work supported in part by the National Science Foundation.



FOLDING MODEL POTENTIALS FROM
REALISTIC INTERACTIONS FOR

HEAVY-ION SCATTERING

G.R. SATCHLER

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.

and

W.G. LOVE

Dept. 0/ Physics and Astronomy, University o/Georgia, Athens, Georgia 30602, U.S.A

I
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM

FOLDING MODEL POTENTIALS FROM
REALISTIC INTERACTIONS FOR

HEAVY-ION SCATTERING

G.R. SATCHLER

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.

and

W.G. LOVE

Dept. 0/ Physics and Astronomy, University o/Georgia, Athens, Georgia 30602, U.S.A

I
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM



G.R. Satchler and w.G. Love, Folding model potentials/rom realistic interactions/or heavy-ion scattering 185

Abstract.

The double-folding model With "realistic" nucleon-nucleon interactions based upon a G-matrix constructed from the Reid potential,
is used to calculate the real part of the optical potential for heavy-ion scattering. The resulting potentials are shown to reproduce the
observed elastic scattering for a large number of systems with bombarding energies from 5 to 20 MeV per nucleon. Some representative
inelastic transitions are also reproduced. Exceptions are the elastic scattering of 6Li and 9Be for which the folded potentials must be
reduced in strength by a factor of about two.

The same effective interactions are shown to give a good account of two particular cases of alpha scattering as well as some cases
of nucleon-nucleus scattering. Some typical examples of inelastic heaVY-IOn scattering are also predicted successfully.

Some general properties of the folding model are reviewed and Its theoretical baSIS is discussed. An explicit density-dependence IS
examined for one particular realistic interaction and found not to change the results. Single nucleon exchange is included in an approxi
mate way and its Importance is studied.

In addition to being a study of the folding model, this work also prOVides a systematic and comprehensive optical model analysis
of heavy-IOn elastic scattering in this energy range.

1. Introduction

The understanding of peripheral heavy-ion (HI) collision processes in general, and elastic and
inelastic scattering in particular is an important part of an overall understanding of heavy-ion
reactions. One of the most widespread approaches to this problem is based upon the use of an
optical potential for the description of the elastic scattering of two heavy ions. Although HI
scattering can be discussed and understood without reference to nuclear potentials (the recent
review article by Frahn and Rehm [1] describes such an alternative), the optical model approach
is both flexible and relatively familiar. It also provides a method for generating distorted waves
for calculating other reaction processes. The optical model approach appears especially suitable
for coupled channel formulations of HI reactions. While many of the systematics of HI scattering
may be understood in terms of empirical parameterizations of the nuclear optical potential and its
variation with bombarding energy, nucleon number etc., we feel that a satisfactory microscopic
understanding of HI collisions should be founded on the underlying nucleon-nucleon (N-N)
interaction. Within the framework of an optical model description of HI scattering this means
calculating the nuclear optical potential from the N-N interaction.

The most transparent relationship between the N-N interaction and HI optical potentials
occurs when the double-folding model is applicable. In this model the optical potential for HI
scattering is obtained by averaging an appropriateN-N interaction over the matter distributions
within the two colliding ions in the same way that the Coulomb interaction potential between two
charge distributions is obtained by averaging the point-charge r- 1 interaction over the distribu
tions.

Folding models, sometimes with higher-order corrections included, have been used for many
years to generate potentials for use in nuclear scattering problems (see, for example, Sinha [2] and
Barrett and Jackson [3]). This use has ranged from the purely phenomenological [4] all the way
to sophisticated attempts to deduce the potential in an essentially parameter-free way from the
nucleon-nucleon force [5,6]. Some early attempts to use this approach to deduce the interaction
potential for two heavy ions (i.e. composite nuclei with A > 4) from nucleon-nucleon scattering
were made by Dover and Vary [7], Satchler [8] and Sinha [9]. Similar ideas underlay a potential
model for bound cluster states in nuclei [10].

Our purpose here is to consider further the application of this approach to the scattering of
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two composite nuclei. We do not attempt to justify formally the use ofa folding model for heavy-ion
potentials. Rather, we compare with experiment the results of double-folding calculations using a
"realistic" effective interaction which was recently derived [l1J from G-matrix elements based
upon the Reid nucleon-nucleon potential and upon the Sussex matrix elements [12]. We shall
show that this procedure gives a good account of a representative sample of the available scattering
data (with the exceptions of 6Li and 9Be) which cover ions with energies up to about 20 MeV
per nucleon. We also discuss some of the features of folding models, giving careful consideration
to the sources of uncertainties.

The "realistic" interaction used here has also been applied successfully to light-ion elastic and in
elastic scattering [11]. It is desirable to have this work extended so as to provide a unified descrip
tion which encompasses both light- and heavy-ion scattering and which is also firmly grounded on
nucleon-nucleon scattering data. Further, the nucleus-nucleus potential is an object of funda
mental importance not only for the description of elastic cross sections but also as an ingredient
in the description of all the phenomena which occur when two nuclei collide. Consequently, the
results of the present work could be of value for predicting the potential for those systems for which
the actual elastic scattering is not known or is difficult to obtain.

2. Heavy ion potentials

Potentials appropriate for the. elastic scattering of two heavy ions have been discussed by
various authors (see, for example, [13-l9J where other references may be found also).

The potential between two nuclei or heavy ions is not uniquely defined. Failure to remember
this has sometimes led to confusion. A conventional optical model potential U(R) for two nuclei
a + A is one which appears in a one-body Schrodinger equation

[ - ~~ V2 + U(R)]X(R) = E X(R), (1)

where f.l~ is the reduced mass of the pair, R is the separation of their centers of mass and E is the
CMS energy of relative motion. The solution X(R) with the appropriate boundary conditions
describes the elastic scattering of a + A. One standard way to make it plausible that eq. (1) may
adequately describe elastic scattering is to expand the total wavefunction of the a + A system in
terms of the internal eigenstates of the separate nuclei,

(2)

where Xij(R) describes their relative motion with internal states labelled i and j. Then Xoo gives the
elastic scattering if i,j = 0 denotes the ground state. If this term is projected out, following Feshbach
[20J, an exact equation for Xoo is obtained which is of the form (1) but with an effective potential
operator Uop• For the moment we ignore the effects of antisymmetrization between the two nuclei,
although we assume the individual t/Jai and t/JAj themselves to be antisymmetric. Then Uop has the
form

Uop = Voo + ~ Vo~ (E _~ .) ~'o (3)
"" + 18 ",,'

= UF + AU, say,
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where V is the interaction between a and A, and the sum is over all the excited states of one or
both nuclei. The first term is real and is simply the so-called folded potential,

UF(R) = Voo == ("'aO'"AO IVI "'aO'"AO)' (4)

where the round brackets denote integration over the internal coordinates of the two nuclei.
The remaining term AU, which we may refer to as a dynamic polarization potential, arises from
coupling to all the other states, is much more difficult to calculate, and in general is complex,
non-local, energy- and angular-momentum dependent.

In phenomenological approaches it is this object Uop which is approximated by a local, complex
model potential U(R), for example of the Woods-Saxon form. In this paper we explore instead the
use of the first term UF as an approximation to the real part of Uop' using a "realistic" interaction
V and with the addition of a phenomenological imaginary potential to represent the absorptive
effects of AU.

A point we wish to stress is that with the potential Uop (and by implication an equivalent model
potential U) defined in this way, eq. (1) describes the relative motion of the two nuclei while they
both remain in their respective ground states. This may be a very small component of the total
wavefunction in that region of space where the two nuclei overlap appreciably; in that case the
strong absorption into other channels manifests itself through Xoo(R) becoming small.

This is to be contrasted with most of the potentials calculated for heavy ion collisions [13-18;
see also, for example, 21]. These calculations attempt to follow to a greater or lesser degree the
readjustments that the two nuclei must make as they begin to interact and overlap. Such a potential
energy function is not relevant just to the XOO component of the wavefunction (2) but is to be used
in a description of the motion of a wave packet which includes a wide range of excited states of the
separated systems. It is not to be identified with Uop of eq. (3), and in principle it should not be
used in an equation like eq. (1) without at least allowing for the corresponding changes in the
kinetic energy term [22]. Further, there is an infinite number of such potential functions, each one
corresponding to one or both of the nuclei in excited states when widely separated. Transitions
between these potentials result in non-elastic scattering and hence absorption from the elastic
channel. However, most calculations are performed in the adiabatic limit so that such transitions
do not occur and their absorptive and other effects are ignored.

Although we prefer to define our potential a propos the specific component XOO through eq. (3),
we freely admit that the physical processes just discussed still manifest themselves through the
dynamic polarization term AU. This term certainly gives rise to the imaginary potential that is
required and, in principle, also contributes to the real part. Our approach here is simply to see
how successful is the use of UF alone for the real part, at least in those regions of space which
are important for the scattering. Recent crude estimates [23-25] have suggested that
Re AU ~ 1m AU when calculated to second order in V, at least in the surface region.

Because of the strong, short-range nature of the nucleon-nucleon force, the V in eq. (3) is not the
bare interaction. As usual in nuclear model calculations, it is assumed that the bare interaction
has been first transformed into an effective interaction (G-matrix) and it is this which V represents.
This transformation itself incorporates some polarization effects, namely those due to short-range
correlations between pairs of nucleons, and in principle allows us to use simpler nuclear wave
functions such as those of the shell model. The present work uses an effective interaction [11]
based upon a G-matrix derived from the Reid nucleon-nucleon potential.

Most of the available heavy ion scattering data is sensitive only to the tail of the nucleus-nucleus
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potential, in the vicinity of some strong absorption radius which is typically about
1.5 (A~/3 + Ay3) fm. In this region of small overlap it is perhaps not unreasonable that the folded
potential UF is a good approximation to the real potential. However, we shall discuss a few cases
such as 12C + 12C, 40Ca + rx and 40Ca + 6Li where the scattering does appear to probe the
potential at much smaller radii where the two ions essentially overlap completely. This sensitivity
to the interior has been explained [26, 27] in terms of the relatively weaker absorption in these
cases.

A more complete test of a heavy ion potential would include its use in analyses of direct inelastic
scattering and transfer reactions as well as elastic scattering. These may involve details of the
wavefunction in the nuclear surface region to which the elastic scattering in itself is not so sensitive
[28]. Some preliminary applications to inelastic scattering are reported here; however, our folded
potentials have been used in only a few analyses of nucleon transfer reactions. Application [29]
to transfers between 12C and 12C which are sensitive to the interior region led to inconclusive
results, while their use [30] for the very peripheral transfers between 11 B, 12C and 208Pb showed
no significant differences from the use of conventional Woods-Saxon potentials which were much
shallower at small radii but similar in the surface.

Attempts are sometimes made [14-18] to relate the potentials required to describe elastic
scattering of heavy ions to those inferred from fusion barriers. In most cases, fusion is believed to
occur at smaller separations of the ions than are usually important for scattering. Numerous
excitations are likely to have occurred by the time such close contact is established; consequently,
the relative motion is no longer described simply by Xoo(R) and the corresponding potential energy
function has been modified from the Uop of eq. (3). The calculated potentials mentioned above
which allow for readjustments of the ions are more likely to be appropriate for estimating fusion
barriers. Asymptotically, these potentials assume the values given by the folding model with the
corresponding interactions, so it is possible that consistency between fusion and elastic scattering
can be obtained when, as usually happens, the scattering is only sensitive to the tail ofthe potential.
Indeed, a recent [16J classical analysis of fusion cross sections resulted in a potential which at
large separations is similar to that obtained from analysis of scattering data. A more recent [18J
semi-empirical generalization of the liquid-drop model has also achieved a unified description
of fusion and scattering (as well as fission). Nonetheless, we argue that these potentials will be
inappropriate for scattering in those cases where the scattering is sensitive to the potential at
smaller distances.

3. The model

3.1. Double-folded potentials

If V is a local two-body operator,

V = LVij,
i,}

where nucleons i are in one nucleus and nucleons j in the other, the folded potential (4) may be
written

(5)
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Fig. I. Coordinates used in folding calculations.

Here Pi is the distribution of the centers of mass of the nucleons in the ground state of the ith
nucleus (which we shall refer to as its "density distribution") while the coordinates are defined by
fig. 1. Because there is integration over two densities, this is often called the double-folding model.

The expression (5) involves a six-dimensional integral. However, contrary to some suggestions
[161], this is quite simple to evaluate. If we work in momentum space (see appendix B), it reduces
to a product of three one-dimensional integrals (Fourier transforms) and often one or more of these
need not be done explicitly if analytic forms for the Fourier transform exist. Even the construction
of the densities themselves from the shell model (rather than using analytic models such as the
Fermi distribution) is fast. The code we use will construct such a folded potential at all required
radial points (typically 300 of them) in a few seconds using the IBM-360/91 computer.

The central part of the effective interaction may be written

(6)

In general there will be spin-orbit and tensor terms also. When neither target nor projectile has
spin, UF becomes a function of the magnitude of R only and the VST terms in eq. (6) with S = 1
do not contribute. More generally, UF will be non-spherical and include spin-dependent terms.
Usually the spin terms are relatively unimportant for determining cross sections [31,32] (see also
appendix A). The non-spherical parts of UF' resulting from one or both of the densities Pi being
non-spherical, may give rise to inelastic scattering to collective rotational or vibrational states
[33]. These non-spherical parts affect the elastic scattering of spin-zero nuclei only if a coupled
channel calculation is made; we do not do this here. Elastic scattering of nuclei with non-zero spin
may be induced by the non-spherical parts of the potential [34], but in one comparison [35] of
160 scattering from 59CO and 69Ni this effect was found to be negligible. Consequently, we restrict
ourselves here to spherical densities and hence spherical potentials UF'

Isospin has not been referred to explicitly in eq. (5). If one or both nuclei have N = Z (and hence
zero isospin), then only VST terms in eq. (6) with T = 0 can contribute. Those with T = 1 can
contribute when both nuclei have N i= Z. However, explicit evaluation for some typical cases
(appendix A) shows these terms to be negligible for the interactions v used here.

These various considerations lead us to evaluate the folding integral (5) with spherical densities
and with the Voo part of the effective interaction (6).

3.2. Single-folded potentials

We should note in passing that if only one of the integrations in eq. (5) is done, the result is a
folded nucleon-nucleus potential. For example, we can rewrite eq. (5) as
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UF(R) = fdr1 U2N(R - r 1) P1(r1),

where

and

(7a)

(7b)

We shall briefly discuss later the use of U2N to describe nucleon scattering from nuclei. However,
the form (7a) has often been invoked but with the use of empirical, phenomenological nucleon
nucleus potentials in place of U2N [36]. This so-called single-folding model invariably overestimates
the strength of the real potential required by heavy-ion scattering data by a factor of about two
[37].*

This is puzzling at first sight, since we shall see that the folded U 2N of eq. (7b), which is an ingre
dient of the heavy-ion potential (7a), is also moderately successful in reproducing nucleon scatter
ing. Several explanations of this apparent paradox have been offered:

(i) When phenomenological nucleon potentials are used, they are generally taken to be of
Woods-Saxon form. Now the long-range behaviour of UF(R) is sensitive to the surface features
of the potential substituted for U2N in eq. (7a), and the Woods-Saxon form may not be an adequate
representation. For example, it has been shown [38] that the square of a Woods-Saxon shape
may give equally good fits to the nucleon scattering data but can result in a considerable reduction
in the strength of the tail of the single-folded heavy-ion potential.

(ii) In genera~ the interaction v is density-dependent; in the folding integral (5) it will depend
upon the densities of both nuclei. An empirical nucleon-nucleus potential incorporates effects due
to the density of one nucleus alone. When such a phenomenological potential is used in the single
folding integral (7a), the effects due to the density of the other nucleus are neglected, whereas the
potential U2N of eq. (7b) remains implicitly dependent upon the density of nucleus 1. This effect
need not be negligible [39].

(iii) The phenomenological nucleon potential includes the effects of coupling to other channels
[40] (L\U in eq. (3)) and these are likely to be quite different when the incident nucleon is bound
in another nucleus compared to when it is free. Indeed, we shall see that our U 2N' constructed
according to eq. (7b), have some deficiencies compared to phenomenological potentials; in parti
cular, they have somewhat too short ranges. This may reflect the neglect of contributions from L\ U
to nucleon scattering, as well as the omission of an explicit density dependence.

3.3. The effective interaction

3.3.1. Properties of the interaction
The bare nucleon-nucleon interaction is too strong to be used as the v which appears in the

double folding integral (5). It has been popular to use for v a simple potentia~ such as a Gaussian

* Reference [37] also indicated that the double-foldmg model predicted potentials which were two or more times too strong. We
now understand, as the present paper explams, that this was due to deficiencies in the effectIve nuc1eon~nuc1eon interactions used in
that work.
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[41] which fits low-energy nucleon-nucleon scattering. However, this has been shown [37] to
overestimate the heavy ion potential by roughly a factor of two. (It has also been shown [42]
to predict (p, p') cross sections which are too large.)

We believe it is desirable to use an effective interaction v which is based upon a realistic nucleon
nucleon force, since one goal is to obtain a unified description of nucleon-nucleon, nucleon
nucleus and nucleus-nucleus scattering. As a consequence, our effective interaction is some kind
of G-matrix. A "high energy" approach to this problem was used by Dover and Vary [7, 33].
In the high-energy limit (or impulse approximation) v would become the (complex) t-matrix for
free space nucleon-nucleon scattering. However, for the low-energy heavy-ion collisions of interest
here, there are very large corrections to be made for the effects of the nuclear medium in which the
two interacting nucleons are embedded (Pauli principle, off-shell propagation and Fermi motion
of the nucleons [43]). As a consequence, in practice a phenomenological ansatz was adopted for
the effective interaction. Originally [7] it was taken to be of zero range with an adjustable, complex,
strength. Later this was generalized to a Gaussian form with an arbitrary range initially of 1 fm
[44] and later of 1.4 fm [33, 45]. This choice has important consequences for inelastic scattering
(see below).

The "low-energy" approach used here [11] assumes that the effective interaction v is similar
to the G-matrix for two nucleons bound near the Fermi surface. One consequence is that our v
is real. More recent work on nucleon scattering [5, 6] has yielded a complex G-matrix; however,
it seems probable that the absorptive processes in heavy-ion scattering are very different so that
we prefer to treat the imaginary potential phenomenologically.

In an earlier approach [46] we used the long-range parts of the even-state Hamada-Johnston
potentia~ in the spirit of the Moszkowski-Scott separation method. Although this gave moderately
good results for nucleon scattering [42, 46], it overestimated heavy-ion potentials by more than a
factor of two [8, 37]' Indeed, in some cases it did not yield an adequate fit to the data and this
discrepancy could be traced [47] to the long range of the OPEP component in the force. This is
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illustrated for the 160 + 6°Ni system in fig. 2; the even-state OPEP term alone gives a large
contribution to the potential near the strong absorption radius and has an unacceptably small
slope. However, this OPEP component is spurious and arises because initially we took only the
even-state interaction and ignored the odd-state parts. In a correct approach, at least the OPEP
should be included in odd states. Then, in the combination [46J of even and odd parts which makes
up voo, the odd and even parts of the OPEP cancel so that this long-range component does not
contribute. (The OPEP is purely S = T = 1.)

The fact that the range of the effective interaction is extremely important is also illustrated by
fig. 3. Folding calculations were made using either a single Gaussian or a single Yukawa for v
but with various ranges. In each case the strength was adjusted to give a potential of -1.35 MeV at
R = 10.6 fm, as appropriate for 40Ca + 40Ca scattering. Figure 3 shows the resulting volume
integral of v,

J = 4nfv(r) r2dr,

against its RMS radius. (The value J = -400 MeV fm3 is roughly the value deduced from nucleon
nucleus scattering.) For example, a zero-ranged force would require a value of J that is about five
times larger than one with <r2

)1 / 2 = 2 fm. Further, we see that the choice of 1.4 fm for the range
ofthe Gaussian [33, 45J «r2

)1 /2 = 1.715 fm) results in a "reasonable" value for J ofabout 400 MeV
fm 3

, whereas the earlier [44J choice of 1 fm «r2
)1/

2 = 1.225 fm) requires J ;::::: 720 MeV fm 3
•
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Fig. 3. Combinations of volume integral and range needed 10 give a p01ential of -1.35 MeV a1 D1/2 = 10.6 fm when using a single
Gauss or a smgle Yukawa term for the interaction.

Figure 3 also illustrates that, while J and <r2
) may be used to characterise the v fairly well,

the choice of its shape is not entirely unimportant. This shape-dependence may be studied further
by expanding in the radial moments of v,

U(R) = J[fp1(r1)P2(IR - r 1i)dr1 - !<r2
) fVP1 'VP2 dr1 + .. .J

(8)
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where (r 2
) is the MS radius of v. In the tail regions of interest, both PI and P2 are falling exponen

tially and for typical realistic values of (r 2
) the two terms in eq. (9) are comparable in magnitude.

This is discussed further in appendix B.

3.3.2. The M3Y interaction
In this paper we are testing the effective interactions of Bertsch et al. [11] which are expressed

as sums of three Yukawa terms; we call these M3Y. One Yukawa term was taken to be the OPEP;
the second was chosen to have a range of 0.4 fin which roughly simulates multiple pion exchange,
and the third range of 0.25 fm was chosen for computational convenience. The strengths of the
latter two terms for the even-state v were chosen to reproduce the G-matrix elements (in an oscilla
tor basis) of the Reid soft-core potential. For the odd-state v, we use their fit to the matrix elements
of Elliott et al. [12]. Full details are given by Bertsch et al. [11]. Then the voo component of eq. (6),
which receives no contribution from the OPEP term, has the form

[
e-4r e- 2.SrJ

voo(r) = 7999- - 2134-- MeV,
4r 2.5r

(10)

(11)

and a volume integral of J oo = -146 MeV fm 3
. On the other hand, if we assume that only the

OPEP force acts in odd-states, we get instead

[
e-4r e- 2.SrJ

voo(r) = 6315~ - 1961 2.5r MeV,

with J00 = - 337 MeV fm 3
. It has been shown [48] that, in the folded potential, there is almost

complete cancellation between the direct and exchange contributions arising from the short-range
parts of the odd-state interaction which are included in eq. (10) (see fig. 2, for example). Conse
quently, the two interactions (10) and (11) are essentially equivalent for the construction of heavy
ion potentials when exchange is included. Except when otherwise indicated, the calculations re
ported here use the form (10).

The potentials (10) and (11) are not as short ranged as their component Yukawas might suggest.
The form (10) has (r 2

) = 7.26 fm2, the same as a single Yukawa with a range of 1.10 fm or a
Gaussian with a range of 2.20 fm, while the potential (11) has (r 2

) = 3.11 fm 2. Further, Goldfarb
[49J has shown that 50 % of the folded potential near the strong absorption radius comes from
v(r) with r ~ 1.6 fm.

Except for a weak dependence of the knock-on exchange terms (see below), the interactions (10)
and (11) are independent of energy. Indeed, from their origin as fits to oscillator matrix elements,
they represent an average over a certain range of energies. Further, these interactions are indepen
dent of the density of nuclear matter in which the two nucleons are embedded. Again, they represent
an average of the interaction for densities ranging from zero to normal nuclear matter; considering
the oscillator matrix elements upon which they are based suggests that they are representative of an
average density of about t of nuclear matter. This would seem not inappropriate for most direct
scattering which largely occurs in the nuclear surface. Even for the very peripheral heavy ion
scattering, the folding integral samples regions where the nuclear density has almost its full value.
This is illustrated by fig. 4 which shows the variation of the potential for 84Kr + 209Bi at three
separations R as the density p(r) of each nucleus is cut off at some rmax = na + c where a = 0.5 fm
is the density diffuseness parameter and c is its half-density radius. (Simple Fermi shapes were
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by 10. The arrows indicate 99 %of the full potential.

assumed for the densities with c(Kr) = 4.83 fm, c(Bi) = 6.63 fm.) The strong absorption radius
for this system is about R = 14.2 fm, when the half-density points are separated by 5.5a. We see
that at this separation, about 20 %of the potential is still coming from where the tail of one density
distribution is penetrating inside the half-density point of the other. To reach 1~~ accuracy for
R = 14.2 fm, the cut-off must be displaced to where the density tail has fallen to 10-4 of the central
value and this is probing the other nucleus into where its density has reached its full central value.

3.3.3. Density-dependence and the DDD interaction
In order to examine the possible importance of the explicit density dependence of the G-matrix,

we made exploratory calculations using an effective interaction of Day et al. [50J which is also
based upon the Reid soft-core potential. They define a loca~ trivially equivalent, G by using the
defining equation for the G-matrix, GcjJ = Vt/f where cjJ is the uncorrelated (plane wave) relative
motion wavefunction for the two nucleons and t/f is the correlated one for two nucleons embedded
in nuclear matter of density p. Also V is a modified Reid potential. Then we define

G(r, p) = V(r) t/f(r, p)/cjJ(r) (12)

averaged over the relative momenta of the pair. We identify this Gwith our effective v by using the
local density approximation; the consequent density dependence of v makes the integral in eq. (5)
substantially more complicated. To simplify the calculations we parameterized the density depen
dence by an exponential form (see appendix C) and in keeping with the frozen density approxima-
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tioD, we took the density to be the sum P = PI(r1) + P2(r2) of the densities at the respective posi
tions of the two interacting nucleons. Hence in the folding (5) we take

(13)

This we call the DDD interaction. Again, the effects of single nucleon exchange were included in
the way described in the next section.

The density-dependence of this DDD interaction is strongest in the triplet-even channel. At
zero density, the DDD interaction (13) is much stronger than the M3Y, but it rapidly falls as the
density increases and becomes comparable to M3Y for densities around 1/3 of normal density.
Explicit calculations were made for a number of systems, including ~ + a, ~ + 40Ca, 12C + 12C,
160 + 6°N~ 40Ca + 40Ca, and 160 + 208pb. These resulted in folded potentials which are a
few per cent weaker for small R but which agree within a few per cent near the strong absorption
radius with those obtained by using the M3Y interactions. (This agreement again suggests that
the latter are characteristic of an average density of about 1/3 normal and that this average is
appropriate for heavy-ion folded potentials.)

The recently developed density-dependent G-matrix of Brieva and Rook [6] is based upon the
Hamada-Johnston potential. Calculations with this yield oscillator matrix elements which are
very similar in magnitude and density dependence to those obtained with the DDD interaction.
Further, the mean square radii of the important even-state components of the two interactions
are similar: Hence, one would expect this more sophisticated interaction to result in folded poten
tials close to those obtained with the DDD one, and hence also close to those reported here using
the M3Y interaction.

3.3.4. Single-nucleon exchange
The forms (4) and (5) do not explicitly show antisymmetrization between nucleons in different

ions, although the individual nuclear wavefunctions t/Ja and t/JA are themselves assumed to be
antisymmetric. A general formalism has been developed [51] for exchange of nucleons between the
two ions. A number of corrections are necessary [21, 52] when the nuclei have appreciable overlap.
Unfortunately, most estimates (but see [53] for example) of these effects are made in an adiabatic
limit and it is not clear how applicable these are to elastic scattering. Even near the strong absorp
tion radius the relative angular kinetic energy is usually quite large. Moreover, there appears to
be considerable cancellation amongst the various corrections [21]. More recently, exchange terms
have been studied [54] within the framework of the resonating-group method. It was found that
the most important contributions come from single-nucleon exchange (which we discuss in this
section) and core exchange, that is, complete exchange of all the nucleons from the smaller system.
Further, this latter term is only important when the two nuclei have almost the same number of
nucleons (AI ~ A 2 ). The ranges of the exchange contributions to the potential decrease as the
number of nucleons exchanged becomes larger. The presence of strong absorption by the imaginary
potential will then further reduce the influence of these multi-nucleon exchange terms on the
scattering.

As we have discussed, the dominant contributions to the potential near the strong absorption
radius come from the surface and tail regions of the nuclear densities and the two densities do not
overlap very much. Then single-nucleon exchange (SNE) between the two ions will be the leading
correction arising from antisymmetrization. The SNE term that we consider is that in which the
two interacting nucleons are interchanged; for nucleon-nucleus scattering, this has been called
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[46, 55J "knock-on exchange". This term is included formally in the double-folding integral (5)
by replacing

(14)

where P12 exchanges all the coordinates of nucleons 1 and 2. At least two groups [48, 55, 56J
have estimated the importance of this SNE term for a common force and have found that it can
be included quite accurately by replacing -P12V12 in eq. (14) by the pseudopotential

(15)

The strength 1 is considerably different for different spin, isospin (S, T) components of the inter
action (6), but it depends very weakly on the energy E for energies between about 5 and 20 MeV
per nucleon. We have adopted the approximation (15) for the calculations reported here. The
values of 1 were obtained by calibrating [55J against "exact" DWBA calculations of the SNE
term in proton scattering. At E = 10 MeV, 100 = -262 MeV fm 3 for the interaction (10) or
100 = -81 MeV fm 3 for the interaction (11). These values were used in all the heavy-ion cases
discussed here since 1 varies by only a few per cent over the energy range covered.

Consequently, the effective interaction including SNE that is to be employed in the folding
eq. (5) is

v~o = Voo + 1oo£5(r12)' (16)

With the v of eq. (10), this v' has a volume integral of J~o = -408 MeV fm 3 and mean square radius
of (r 2

) = 2.60 fm 2
• Very similar values are obtained with a purely OPEP force in odd-states,

v of eq. (11); then we have J~o = -418 MeV fm 3 and (r 2
) = 2.51 fm 2

. Except when indicated,
the former version was used for the results reported here.

An alternate approximation for the SNE makes use of the Slater approximation to the one-body
mixed density (see Sinha [2J for example). This also reduces to the use of a zero-range pseudo
potential like eq. (15) except that the strength is now position-dependent [57]. This has also been
tested against "exact" exchange calculations [57J and works quite well for nucleon elastic scatter
ing. For heavy-ion scattering, with the interaction (10) used here, this approach predicts somewhat
larger exchange terms than the pseudo-potential (15) so that the total heavy-ion potential may be
increased by about 25 %near the strong absorption radius. Of course, the Slater approximation
itself is most suspect in the surface regions of the density which are important in this case. However,
these results provide some measure of the uncertainty associated with the exchange terms and
they also suggest that we may be somewhat underestimating the effects of SNE by using eq. (15).

3.4. The nuclear densities

3.4.1. Densities from charge distributions
The most direct measure we have of the densities pi(rJ to be used in eq. (5) comes from electron

scattering. This only yields information about the charge density and hence primarily about the
proton distribution. However, for light nuclei (A ;S 40) with N = Z, it is not unreasonable to
assume that the neutron and proton distributions are the same.

The finite size of the charge distribution of the proton itself [58] (r2
) ~ 0.76 fm 2

) must be
unfolded to give the distribution of the centers of mass of the protons. A further correction should
be made for the charge distribution within the neutron [59J (r 2

) ~ -0.11 fm 2
). For this purpose,
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we may assume that the neutrons and protons are distributed similarly in the nucleus so that
Pn = (N/Z)p p ; then the radii of the proton and charge distributions are related by [3]

<r2
\ ::::; <r2

)ch - 0.76 + O.ll(N/Z). (17)

This neutron correction is not necessarily negligible. For example, the potential for 40Ca + 40Ca
near the strong absorption radius was found to decrease by 8%when the densities used were
obtained ignoring this correction.

Since the small momentum components are most important, it is convenient for this unfolding
to assume that the average proton charge distribution has an exponential shape with a range
such that <r2

) = 0.76 - 0.1 1(N/Z) and this was done in our calculations.

3.4.2. The neutron density
Although we may assume that the neutron and proton distributions are the same in light nuclei

when N = Z, it is not generally correct to assume that Pn = (N/Z)pp when N > Z. Indeed, there
are indications [3] that the RMS radius of the neutrons is slightly greater than that for the protons
when N > Z. The two triangles in fig. 5 illustrate for 160 + 6°Ni the effect of making two extreme
assumptions about the neutron density of 6°Ni; the lower one corresponds to taking Pn = (N/Z)p p ,

while the upper results from assuming that Pn has the same central value as Pp (which requires the
neutron half-density radius to be 0.205 fm larger than the proton one). The latter assumption gives
a potential 11 %larger at the strong absorption radius than the former does. The effect, of course,
can be larger when the neutron excess is larger. In the case of 160 + 208Pb, for example, if we use
Pn = (N/Z)pp with Pp being the Hartree-Fock proton density [60], instead of using the corres
ponding Hartree-Fock neutron density, the potential near the strong absorption radius is reduced
by 35 %. This raises the interesting possibility that, once the validity of an effective interaction
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Fig. 5. The calculated potential at R = 9.7 fm for a variety of chOiCes of density distributions for 160 and 6°Ni plotted against the
sum of the mean square radii for those distributions. The dashed line is simply to guide the eye; the horizontal line is the value of
Re V(R = 9.7) required to fit the data. The arrows indicate the uncertainty in <r 2>allowed by the range of values quoted for the charge
radius of 6oNi. As an example, the two triangles denote calculations in which the density of 6°Ni was assumed to have a two-parameter
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G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering 197

we may assume that the neutrons and protons are distributed similarly in the nucleus so that
Pn = (N/Z)p p ; then the radii of the proton and charge distributions are related by [3]

<r2
\ ::::; <r2

)ch - 0.76 + O.ll(N/Z). (17)

This neutron correction is not necessarily negligible. For example, the potential for 40Ca + 40Ca
near the strong absorption radius was found to decrease by 8%when the densities used were
obtained ignoring this correction.

Since the small momentum components are most important, it is convenient for this unfolding
to assume that the average proton charge distribution has an exponential shape with a range
such that <r2

) = 0.76 - 0.1 1(N/Z) and this was done in our calculations.

3.4.2. The neutron density
Although we may assume that the neutron and proton distributions are the same in light nuclei

when N = Z, it is not generally correct to assume that Pn = (N/Z)pp when N > Z. Indeed, there
are indications [3] that the RMS radius of the neutrons is slightly greater than that for the protons
when N > Z. The two triangles in fig. 5 illustrate for 160 + 6°Ni the effect of making two extreme
assumptions about the neutron density of 6°Ni; the lower one corresponds to taking Pn = (N/Z)p p ,

while the upper results from assuming that Pn has the same central value as Pp (which requires the
neutron half-density radius to be 0.205 fm larger than the proton one). The latter assumption gives
a potential 11 %larger at the strong absorption radius than the former does. The effect, of course,
can be larger when the neutron excess is larger. In the case of 160 + 208Pb, for example, if we use
Pn = (N/Z)pp with Pp being the Hartree-Fock proton density [60], instead of using the corres
ponding Hartree-Fock neutron density, the potential near the strong absorption radius is reduced
by 35 %. This raises the interesting possibility that, once the validity of an effective interaction

1.9

1 8
160 + 60Ni • / -

/
1.7 • / . -

;:: /.. EXPT / .~
E 1.6 / -

.... ./ai

~ 1.5 /
:0

/I

1.4 / ..
/

1.3
( )

20.0 20.5 210 21.5

L <r 2 >!lm 2 )

Fig. 5. The calculated potential at R = 9.7 fm for a variety of chOiCes of density distributions for 160 and 6°Ni plotted against the
sum of the mean square radii for those distributions. The dashed line is simply to guide the eye; the horizontal line is the value of
Re V(R = 9.7) required to fit the data. The arrows indicate the uncertainty in <r 2>allowed by the range of values quoted for the charge
radius of 6oNi. As an example, the two triangles denote calculations in which the density of 6°Ni was assumed to have a two-parameter
Fermi form; the lower value results from assuming Pn = (NIZjpp while the upper one comes from taking Pn(r = 0) = pp(r = 0).



198 G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering

has been established, the extremely peripheral nature of heavy-ion scattering may be a sensitive
probe of the extent of neutron distributions in nuclei [3, 61].

We adopted the independent particle model (IPM) as a way to obtain reasonable neutron density
distributions when N oft Z.

3.4.3. Hartree-Fock densities
Hartree-Fock (HF) theory provides an IPM with a self-consistent potential derived from realis

tic nucleon-nucleon forces. We have chosen to use the matter densities obtained by Negele [60J
for 40Ca, 48Ca, 90Zr and 208Pb since his proton densities are in agreement with data for electron
scattering, etc. (The appropriate center of mass recoil correction was applied using the oscillator
approximation.)

3.4.4. Shell-model densities
Hartree-Fock densities are available only for a few doubly-magic nuclei. The more phenomeno

logical shell model has the advantage of flexibility; it may be used for nuclei with unclosed shells
and is easily extended to odd nuclei. Further, if the binding energies are chosen appropriately, there
is a good chance of getting correctly the shape of the tail of the density distribution [62J. Against
this is the uncertainty in the parameters to be used.

We chose the IPM potential to be local and of Woods-Saxon shape (with a spin-orbit coupling
term of the usual Thomas form),

VCr) = -V(eX + 1)-\ x = (r - R)/a

with

R = ro(A - 1)1/3.

For protons, we added the Coulomb potential due to a uniform charge distribution of magnitude
(2 - l)e and radius rc(A - 1)1/3. We used rc = 1.2 fm except for the lightest nuclei for which
rc = 1.35 fm was used. We demanded that the resulting proton distribution be in agreement with
electron scattering data, at least to the extent of having the correct mean square radius. (In view
of the uncertainties in the neutron distribution, a more detailed fit [63J to electron scattering was
not attempted.) Except for the lightest nuclei, we found that the Woods-Saxon potential parameters
of Batty and Greenlees [64] (V = 60 MeV, ro = 1.28 fm, a = 0.76 fm) gave satisfactory values
for the proton RMS radii. They also resulted in neutron RMS radii which were slightly larger by
reasonable amounts [3J when the well depths were adjusted to reproduce approximately the known
separation energies of the least-bound neutrons (V = 54 MeV for 6°Ni, 50 MeV for 88Sr and
45 MeV for 142Nd). Consequently, we used these parameters for the neutron potentials also, except
in the case of 208Pb where we used parameters which had been found [30J to give satisfactory
fits to neutron pick-up data (V = 45 MeV, ro = 1.25 fm, a = 0.65 fm). (In principle, we should
always be guided by neutron pick-up data, although in practice for most nuclei there are sufficiently
large uncertainties in the values expected for the spectroscopic factors that the constraints imposed
in this way are not very strong.) These potentials also give densities for the doubly-magic nuclei
which are very similar to the HF ones of Negele; in the case of 208Pb, potentials calculated using
the HF and the shell-model densities agreed to about 1 %. (On the other hand, we also tried the
Batty-Greenlees potential for the neutrons in 208Pb, with V = 45 MeV except for the last-filled
shell where the value of V was adjusted slightly to give the observed separation energies. This

198 G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering

has been established, the extremely peripheral nature of heavy-ion scattering may be a sensitive
probe of the extent of neutron distributions in nuclei [3, 61].

We adopted the independent particle model (IPM) as a way to obtain reasonable neutron density
distributions when N oft Z.

3.4.3. Hartree-Fock densities
Hartree-Fock (HF) theory provides an IPM with a self-consistent potential derived from realis

tic nucleon-nucleon forces. We have chosen to use the matter densities obtained by Negele [60J
for 40Ca, 48Ca, 90Zr and 208Pb since his proton densities are in agreement with data for electron
scattering, etc. (The appropriate center of mass recoil correction was applied using the oscillator
approximation.)

3.4.4. Shell-model densities
Hartree-Fock densities are available only for a few doubly-magic nuclei. The more phenomeno

logical shell model has the advantage of flexibility; it may be used for nuclei with unclosed shells
and is easily extended to odd nuclei. Further, if the binding energies are chosen appropriately, there
is a good chance of getting correctly the shape of the tail of the density distribution [62J. Against
this is the uncertainty in the parameters to be used.

We chose the IPM potential to be local and of Woods-Saxon shape (with a spin-orbit coupling
term of the usual Thomas form),

VCr) = -V(eX + 1)-\ x = (r - R)/a

with

R = ro(A - 1)1/3.

For protons, we added the Coulomb potential due to a uniform charge distribution of magnitude
(2 - l)e and radius rc(A - 1)1/3. We used rc = 1.2 fm except for the lightest nuclei for which
rc = 1.35 fm was used. We demanded that the resulting proton distribution be in agreement with
electron scattering data, at least to the extent of having the correct mean square radius. (In view
of the uncertainties in the neutron distribution, a more detailed fit [63J to electron scattering was
not attempted.) Except for the lightest nuclei, we found that the Woods-Saxon potential parameters
of Batty and Greenlees [64] (V = 60 MeV, ro = 1.28 fm, a = 0.76 fm) gave satisfactory values
for the proton RMS radii. They also resulted in neutron RMS radii which were slightly larger by
reasonable amounts [3J when the well depths were adjusted to reproduce approximately the known
separation energies of the least-bound neutrons (V = 54 MeV for 6°Ni, 50 MeV for 88Sr and
45 MeV for 142Nd). Consequently, we used these parameters for the neutron potentials also, except
in the case of 208Pb where we used parameters which had been found [30J to give satisfactory
fits to neutron pick-up data (V = 45 MeV, ro = 1.25 fm, a = 0.65 fm). (In principle, we should
always be guided by neutron pick-up data, although in practice for most nuclei there are sufficiently
large uncertainties in the values expected for the spectroscopic factors that the constraints imposed
in this way are not very strong.) These potentials also give densities for the doubly-magic nuclei
which are very similar to the HF ones of Negele; in the case of 208Pb, potentials calculated using
the HF and the shell-model densities agreed to about 1 %. (On the other hand, we also tried the
Batty-Greenlees potential for the neutrons in 208Pb, with V = 45 MeV except for the last-filled
shell where the value of V was adjusted slightly to give the observed separation energies. This



G.R. Satchler and w.G. Love. Folding model potentials from realistic interactions for heavy-ion scattering 199

results in a larger neutron RMS radius of 5.793 fm, or 0.29 fm larger than the proton RMS radius.
We shall see later that this gives somewhat more satisfactory results for some heavy-ion scattering
even though the neutron radius is appreciably larger than predicted by Hartree-Fock calculations
[3, 60J or deduced from 1 GeV proton scattering [65].)

Analyses of electron scattering from 28Si and 32S have been made [66J using shell-model
proton densities. We took these proton potentials and orbit occupancies and assumed that the
neutron and proton densities were equal for these nuclei.

For the light nuclei 12C and 160 we used binding energies [Aj(A - l)J2 times the measured
separation energies to account for CM recoil effects and thus ensure the correct behaviour in the
tails [62]. We assumed a potential diffuseness of a = 0.65 fIn and adjusted the potential radius to
give the desired radius for the proton distribution. We found ro = 1.243 fm e2C) or 1.367 fm e60).
The results reported here were then obtained assuming that the neutron distribution was equal
to that of the protons. However, we also studied the effects of assuming that the neutron and
proton potentials were the same (except for a slight adjustment in depth to reproduce the observed
separation energies) instead of the assumption that Pn = Pp ' This prescription results in neutron
distributions with RMS radii smaller than those for the protons by 1 to 2 %. The corresponding
folded potentials are shallower by about twice this amount, but this kind of uncertainty is negligible
in the present context.

For the odd nuclei lOB, 11Band l3C we assumed that the densities were exactly as for 12C
except for the addition or subtraction of the appropriate 1p orbitals calculated in the same potential
that was used for 12c. The density for 15N was treated as a lP1/2 hole in 160 in the same way.
The heavier odd nuclei were related to the adjacent even nuclei in a like manner. There is no
guarantee that this procedure is correct, although it is suggested by the Hartree-Fock picture for
closed-shell ± I-nucleon systems. Unfortunately, even the proton distributions are not well
determined (by electron scattering) for most of the odd light nuclei.

The special case of 6Li and 9Be are discussed separately in a later section.
In principle, shell model densities should be corrected for recoil of the center of mass. This may

be done in the harmonic oscillator approximation (and was in the cases of 28Si and 32S) or by the
prescription based upon Clement [62]. We used the latter for the lightest nuclei, although the effects
of neglecting recoil were quite negligible provided the shell model potential was readjusted to give
a P with the same <r2>value. Recoil effects were ignored for heavier nuclei, where they are small
anyway.

The RMS radii of the various density distributions are listed in table 1.

3.4.5. Contributions from the major shells
An interesting question is: how large are the contributions to the folded potential from the 1ast

filled major shells in the shell model densities? This was studied for the shells of the Pb nucleus in
the 208Pb + 160 system. The fraction of the folded potential near the strong absorption radius
(R ~ 12.5 fm) due to the last-filled major shell of protons in 208Pb (5 orbits, 32 protons) is 17 %,
while 46 %is due to the last-filled major shell of neutrons (6 orbits, 44 neutrons). The predominance
of the neutrons over the protons is due to their greater spatial extension (RMS radius of 6.10 fm
compared to 5.80 fm for the protons) with a longer tail to their distribution. This emphasizes
again the possibility of using heavy-ion scattering as a probe of neutron distributions.

The remaining 37 %of the potential results from the other 132 nucleons which are more deeply
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Table I
RMS radii for the density distributions used in the folding calculations

Nucleus 4He 6LI 7Li lOB liB 12C 13C 14N 15N 160

<r2>~;;p (fm) 1.461 2.422 2.373 2.274 2.279 2.314 2.368 2.423 2.580 2.596
<r2>~/2 (fm) 2.441 2.283 2.414 2.596
<r2>~/2 (fm) 1.461 2.422 2.279 2.274 2.274 2.314 2.314 2.423 2.564 2.596
<r2>:e (fm) 1.670 2.553 2.409 2.413 2.408 2.450 2.446 2.554 2.685 2.718

Nucleus 170 27AI 28Si 32S 40Ca 44Ca 48Ca 58Ni 59CO 6°NI

<r2>~;;p (fm) 2.666 2.987 3.001 3.148 3.366 3.410 3.566 3.723 3.753 3.760
<r2>~/2 (fm) 2.727 3.001 3.345 3.472 3.659 3.734 3.788 3.788
<r2>~/2 2.596 2.973 3.001 3.148 3.386 3.333 3.431 3.710 3.711 3.729
<r2>:e (fm) 2.718 3.079 3.107 3.250 3.481 3.426 3.518 3.796 3.795 3.813

Nucleus 88Sr 89y 90Zr 124Sn 142Nd 207Pb 208Pb 208Pba) 209Bi 209Bib) 208Pbo)

<r2>~;;p (fm) 4.250 4.251 4.244 4.686 5.013 5.603 5.573 5.605 5.608 5.576 5.679
<r2>~/2 (fm) 4.329 4.329 4.299 4.734 5.119 5.669 5.651 5.673 5.673 5.651 5.793
<r2>~/2 (fm) 4.136 4.148 4.175 4.615 4.863 5.499 5.451 5.499 5.506 5.459 5.499
<r2>:~2 (fm) 4.210 4.222 4.249 4.679 4.926 5.553 5.505 5.552 5.560 5.513 5.552

The densities for 40.48Ca, 90Zr and 208Pb are from Hartree-Fock calculations [60], the 4He density was taken to be
Gaussian and the remainder were constructed using the shell model, as discussed in the text. Where the neutron entnes are
left blank, it was assumed that neutron and proton densities were identical.

a) Shell-model densities for 208Pb upon which those for 207Pb and 209Bi are based: see text.
b) Hartree-Fock density [60] for 208Pb plus one 1h9/2 shell-model proton.
0) Shell-model density with protons as in case a) but neutrons in a well of the same size as the protons; see text.

bound in z08Pb; these are more confined spatially (the RMS radius of this "core" is 5.38 fm com
pared to 5.97 fm for the sum of the last-filled shells).

3.5. General features

3.5.1. Shape and strength of the potential
The folded potential is, of course, very deep for small separations of the ions (R :::::: 0). If one ion

is much smaller than the other, At ~ A z say, the central depth is approximately equal to
AtJoopz(rz:::::: 0), or about 65 At MeV if the central density is pz:::::: 0.16 nucleons fm- 3

• The
potential is less deep when the ions are of comparable size, but this estimate gives the depth to
within a factor of2 even when At = A z. We return later to the question whether this potential in
the interior is significant and whether information about it can be deduced from experiment.

Of particular importance is the fact that a folded potential does not have the same shape as the
Woods-Saxon form commonly used. Indeed, it has an overall shape closer to that of the Woods
Saxon form raised to some power v, with v ~ 2 (see [67, 68, 72], for example). This difference is
relevant when the scattering does probe the potential inside the strong absorption radius and
hence is sensitive to its shape at least in the surface region. Such is the case for high-energy (<; 100
MeV) alpha scattering for which shapes differing from the Woods-Saxon one have been found to
give superior fits to data [69]. (However, we shall see later that these data also seem to demand
a potential which is more shallow than given by our interaction.) Instances of sensitivity to the
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interior potential also occur at lower energies when the absorption is "anomalously" low, and these
have also been fitted using potentials offolded or similar shape [70-73]. These shapes have also
been found superior for calculations of cluster-type bound states in nuclei [10, 74].

Further, the tail of the folded potential does not decrease like a simple exponential [49], as
would be the case for the Woods-Saxon type potentials, the global potential introduced by Chris
tensen and Winther [19] or the approximate form of the proximity potential [75]. Over a limited
range, for s > 1, the shape of the folded potential U(R) may be represented by sn exp ( - slf3) where
s = R - R 1 - Rz is the separation between the surfaces of the two nuclei. For example, in the
important range of R ~ 8 to 11 fm (or s ~ 1 to 4 fm) for 160 + 6°Ni we have n ~ 1 and f3 ~ 0.534 fm
if we take R1 + Rz = 6.8 fm. In most cases the scattering of heavy ions is sensitive only to the
potential for a very restricted range of r values around the strong absorption radius, so only two
quantities, the value and slope in this region, are important. Any parameterization (within reason)
which reproduces these two quantities will yield equivalent fits to the data. In this circumstance
the inverse of its logarithmic derivative at this radius becomes a significant quantity. We shall see
(table 3) that this has values between 0.6 and 0.7 fm to be compared with the 0.63 fm adopted by
Christensen and Winther [19] for their empirical potential and the nominal value of0.75 b =0.75 fm
used by Blocki et al. [75].

The strength of the folded potential in its tail, for a given separation s between the surfaces of
the two nuclei, varies with the sizes of the two nuclei in the way suggested by the proximity theorem
[75], namely it is approximately proportional to the harmonic mean of their radii of curvature,

R = R 1R zI(R 1 + R z).

Consequently, it is roughly proportional to

(A1A2)1/3/(A~/3 + Ay3).

However, care must be taken when applying this rule-of-thumb. The various calculated UF(R) do
not all vary with s in exactly the same way for large R; in particular, as we have stressed, the
dependence on s is not simply exponential. Further, the proximity result applies only if the radii
Rj are defined appropriately [75] and, in any case, is itself approximate [76].

3.5.2. Effects of single-nucleon exchange
As discussed above, the effects of single nucleon exchange were included by use of the pseudo

potential of eq. (I 6). Since j 00 is negative for both the interactions (IO) and (I 0, the result is to
make the potential more attractive. (See also [77] for similar results obtained with a different
interaction.) The net effect is small near the strong absorption radius, as illustrated by fig. 2. The
precise division into direct (D) and exchange (E) terms depends upon the choice made for the
interaction in odd states; however, the total (D + E) is insensitive to this choice (provided the
correct OPEP components are included). As shown by table 2, this is because the non-OPEP
parts of the odd-state forces have short ranges and their direct and exchange contributions to
the folding almost completely cancel. For the interaction (I 0), the cancellation between these
terms is complete to better than 3%in the tail of the potential for 160 + 6°Ni, for example (table 2),
so that they contribute less than 1%of the total potential in this region. The cancellation is less
complete for smaller R values, but it is still very substantial. Consequently, it is a good approxima
tion to neglect the non-OPEP parts of the odd-state effective interaction. This is a fortunate situa
tion because these parts of the interaction appear to be the least well understood.
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Table 2
Direct (D) and exchange (E) parts of the folded potential for 160 + 6°Ni at

R = 9.6 fm [48]

Interaction type·) D E D+E (D + El/D

Even Odd (MeV) (MeV) (MeV)

Reid Elliott -1.41 -0.56 -1.97 1.40
Reid OPEP -1.79 -0.17 -1.96 1.10

(Elliott-0PEP) -0.38 +0.39 +0.01 -om

.) Reid + Elliott corresponds to the interaction of eq. (10), while Reid + OPEP
corresponds to eq. (II). (Elliott-OPEP) consists of the short-range (non-OPEP)
part of the odd-state force.

The exchange term becomes relatively larger at smaller distances R; for the 160 + 6°Ni case,
E/D ---+ 0.22 in the interior for the Reid-even plus OPEP-odd interaction (11), while E > D for
the Reid-even plus Elliott-odd interaction (10) for R < 7 fm. However, as just remarked, there is
still nearly complete cancellation between direct and exchange from the non-OPEP odd force,
so that the two interactions still give almost the same potential even for small R.

The relative importance of exchange at large R will increase for heavier systems because their
surfaces have less curvature and because the equivalent exchange interaction is of much shorter
range (zero range with our model (15)) than the direct interaction (10) or (11). However, this effect
is small. For example, model calculations for 12C + 12C and 208Pb + 208Pb with the Reid-even
plus Elliott-odd force showed that, for a separation R = R 1 + R 2 + 3 fm, the exchange contribu
tion was 20 %for the light system but increases to 26 %for the heavy system. Allowing the exchange
pseudo-potential to have a finite range would make this increase even smaller.

The strength J(E) of the pseudo-potential (15) varies with bombarding energy but the variation
is small over the energy range E/A ~ 5 to 20 MeV of interest here. The interaction (10), for example,
is associated with

Joo(E) ~ 276(1 - 0.005E/A) MeV fm 3 (19)

which imparts a very weak energy dependence to the folded potential. It is consistent to ignore this
since we ignore any variation with E of the effective interaction v itself.

Finally, it should be remarked that application of the Slater approximation to the exchange
term [57] results in larger estimates of this contdbution than does the pseudo-potential (15).
For example, in calculations [57] for 40Ca + 40Ca, which would be typical, the Slater approach
with the interaction (10) yielded a (direct + exchange) potential at the strong absorption radius
(about 10.6 fm) of -1.5 MeV which is 25 %larger than the value -1.2 MeV obtained by use of
the zero-range pseudo-potential (15). This difference would be much less for the interaction (11)
simply because the overall magnitude of the exchange terms is greatly reduced. On the other hand,
a force with stronger odd-state components would enhance the difference. It is difficult to evaluate
these two approaches to exchange until exact calculations are available, although the results might
suggest (see also [56]) that we somewhat underestimate the exchange contribution by using the
zero-range approximation (15). In any case, the uncertainty involved is not much outside the limit
to our confidence in the folding model and its attendant uncertainties.
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3.5.3. Potential barriers and fusion
We have already expressed our opinion that the potential which governs the wave function of

relative motion (Xoo(R) in section 2) and describes elastic scattering is not everywhere the same as
the potential which may be appropriate for describing fusion cross sections. Fusion may occur
following fast (direct) transitions to non-elastic channels as well as from the entrance channel
itself. These "doorway" effects will influence the potential function which describes the evolution
of the system towards fusion in ways different from their contributions to the polarization potential
!i.U for elastic scattering. Consequently, we can expect the two potentials to differ when the two
nuclei begin to make contact. One manifestation of this is that while the S-wave barrier heights
deduced [17] are similar to those obtained with our folded potentials, the empirical barrier position
generally occurs at a smaller radius (by amounts up to about 1 fm). This implies that the "fusion
potential" has a less steep slope in the surface region than our folded potentials which fit elastic
data. This is confirmed by comparison with the universal empirical potential of Bass [16] whose
slope is similar to that of the folded potential in the vicinity of the strong absorption radius but
which becomes less steep at smaller radii; at R ~ R1 + R2 , or s ~ 0, the logarithmic derivative of
this empirical potential is about one halfthat for the folded potentials. The potential of Krappe et al.
[18] shows a similar but less marked difference.

4. Application to nucleon scattering

The volume integral per nucleon ofthe real part ofthe optical potential for neutrons and protons
appears to be determined quite accurately from elastic scattering data [78, 79]. This is equal to
the volume integral of the effective interaction, eq. (8), for a folded potential provided the inter
action is density-independent. The empirical values for the (8, T) = (0, 0) part extrapolated to a
proton energy of 10 MeV are given by [78, 79]

J~o (expt.) ~ -(430 ± 20) MeV fm 3 (20)

which agree quite well with the values -408 and -418 MeV fm3 for the M3Y interactions (10)
and (11), respectively, when exchange is included. When the target nuclei have N > Z we also
need the effective interaction VOl for (8, T) = (0, 1) (see eq. (6)). This was based upon the same
Reid-even plus Elliott-odd force that gives the Voo term of eq. (10); the validity of this VOl term has
been checked previously [80] by the comparison with experiment of calculations of (p, n) transi
tions to isobaric analog states. It is repulsive and has the form

VOl (r) = - [4886 e;r
4r

- 1176 e;;:'] + 217<5(r) (21)

where, as before, the zero-range term is the pseudo-potential representing single nucleon exchange.
(The value shown for this latter term is for a bombarding energy of 10 MeV but again it only
varies slowly with energy.) The magnitude of the volume integral of this term is almost exactly
half that for the (8, T) = (0, 0) term,

Jot!Joo = -0.50, (22)

in agreement with the assumption often made [78, 79]. (The same assumption was used in extract
ing the empirical values given by eq. (20).)
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More sophisticated applications to nucleon scattering have been made recently [5, 6]. These
use a complex, energy- and density-dependent G-matrix for one nucleon in the continuum inter
acting with another bound in nuclear matter. Imaginary and spin-orbit parts of the optical poten
tial are obtained at the same time as the real, central part. However, in keeping with our aim of a
unified description of nucleon-nucleus and nucleus-nucleus scattering, it behooves us to examine
further the adequacy for neutron and proton scattering of the interactions used here for heavy ion
scattering. Our interactions are real, so that we only predict the real, central part of the nucleon
optical potential; we treat the spin-orbit and imaginary terms phenomenologically. In principle,
we could use the nucleon-nucleon spin-orbit effective interaction of Bertsch et al. [11] to generate
the nucleon-nucleus spin-orbit coupling, but this was not done. (Our main purpose is to test the
central interaction since it is that which is important for heavy ions.) Rather, for our present pur
pose, we simply took the imaginary and spin-orbit parts of the Becchetti-Greenlees global,
phenomenological optical potential [78] and added them without change to our folded real
potential. In general, this will not be exactly correct and will not yield the optimum fits to scattering
data, but it does avoid some ambiguities of interpretation which could arise if these other parts
of the potential were arbitrarily adjusted.

The folded real potentials of eq. (7b) were constructed using the same nuclear density distri
butions that were used for the heavy-ion calculations. Calculations were made for nucleon elastic
scattering from 40Ca, 6°Ni and 208Pb, at energies of about 10 to 30 MeV, with generally similar
results. Figure 6 shows some examples for 6oNi. In this figure, the folded potentials have been
renormalized by a factor N to optimize the fit to the data. The N values, quoted in the figure,
deviate from unity by negligible amounts (::5 5%). The agreement with experiment is quite satis
factory but not as good as can be obtained by simply using a phenomenological Woods-Saxon
form for the real part of the potential. The fits could be improved by varying the parameters
of the imaginary and spin-orbit terms and a certain amount of this could be justified. However,
comparisons of the folded potential with the optimum Woods-Saxon real potential suggests that
our theoretical potential has a mean square radius which is slightly too small. The same conclusion
follows from comparison with phenomenological folding model analyses [79]. For example,
these phenomenological potentials for 6°Ni + n or p have <r2

//
2 ~ 4.5 fm, while our folded

potential has <r2 )1/2 ~ 4.1 fm, a difference of about 3 fm2in <r2
). The deficiency may be somewhat

smaller for 208Pb + nor p; the folded potentials have <r2 )1/2 ~ 5.9 fIn (protons), 5.8 fm (neutrons),
while the phenomenological potentials have <r2

)1/2 ~ 6.0 fm.
The phenomenological folded potentials of Greenlees et al. [79] suffer from the same difficulty.

It shows itself in their work either in the deduction of neutron distributions with unacceptably
large radii (when their phenomenological interaction is constrained to have (r 2

) = 2.25 fm 2,
not too different from the value 2.60 fm2 for our M3Y interaction) or in the need for an interaction
with a longer range, e.g. with (r 2

) ~ 4.3 fm2.
The cause of this discrepancy is not clear. It could be that the zero-range pseudo-potential of

eq. (15) is not adequate to describe exchange, although it seems unlikely that this would explain
the whole discrepancy. A large increase in the radii ofthe neutron density distributions would also
improve the agreement although the ones we have used are consistent with other knowledge of
neutron radii [3]. A density dependence of the interaction is capable of producing this kind of
difference [81] although our calculations using the density-dependent DDD interaction (section
3.3.3) give almost the same results (but see [82]). Finally, the discrepancy observed might be due
to neglect of contributions from the polarization potential ~u of eq. (3) [40]. Whatever the explana-

204 G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering

More sophisticated applications to nucleon scattering have been made recently [5, 6]. These
use a complex, energy- and density-dependent G-matrix for one nucleon in the continuum inter
acting with another bound in nuclear matter. Imaginary and spin-orbit parts of the optical poten
tial are obtained at the same time as the real, central part. However, in keeping with our aim of a
unified description of nucleon-nucleus and nucleus-nucleus scattering, it behooves us to examine
further the adequacy for neutron and proton scattering of the interactions used here for heavy ion
scattering. Our interactions are real, so that we only predict the real, central part of the nucleon
optical potential; we treat the spin-orbit and imaginary terms phenomenologically. In principle,
we could use the nucleon-nucleon spin-orbit effective interaction of Bertsch et al. [11] to generate
the nucleon-nucleus spin-orbit coupling, but this was not done. (Our main purpose is to test the
central interaction since it is that which is important for heavy ions.) Rather, for our present pur
pose, we simply took the imaginary and spin-orbit parts of the Becchetti-Greenlees global,
phenomenological optical potential [78] and added them without change to our folded real
potential. In general, this will not be exactly correct and will not yield the optimum fits to scattering
data, but it does avoid some ambiguities of interpretation which could arise if these other parts
of the potential were arbitrarily adjusted.

The folded real potentials of eq. (7b) were constructed using the same nuclear density distri
butions that were used for the heavy-ion calculations. Calculations were made for nucleon elastic
scattering from 40Ca, 6°Ni and 208Pb, at energies of about 10 to 30 MeV, with generally similar
results. Figure 6 shows some examples for 6oNi. In this figure, the folded potentials have been
renormalized by a factor N to optimize the fit to the data. The N values, quoted in the figure,
deviate from unity by negligible amounts (::5 5%). The agreement with experiment is quite satis
factory but not as good as can be obtained by simply using a phenomenological Woods-Saxon
form for the real part of the potential. The fits could be improved by varying the parameters
of the imaginary and spin-orbit terms and a certain amount of this could be justified. However,
comparisons of the folded potential with the optimum Woods-Saxon real potential suggests that
our theoretical potential has a mean square radius which is slightly too small. The same conclusion
follows from comparison with phenomenological folding model analyses [79]. For example,
these phenomenological potentials for 6°Ni + n or p have <r2

//
2 ~ 4.5 fm, while our folded

potential has <r2 )1/2 ~ 4.1 fm, a difference of about 3 fm2in <r2
). The deficiency may be somewhat

smaller for 208Pb + nor p; the folded potentials have <r2 )1/2 ~ 5.9 fIn (protons), 5.8 fm (neutrons),
while the phenomenological potentials have <r2

)1/2 ~ 6.0 fm.
The phenomenological folded potentials of Greenlees et al. [79] suffer from the same difficulty.

It shows itself in their work either in the deduction of neutron distributions with unacceptably
large radii (when their phenomenological interaction is constrained to have (r 2

) = 2.25 fm 2,
not too different from the value 2.60 fm2 for our M3Y interaction) or in the need for an interaction
with a longer range, e.g. with (r 2

) ~ 4.3 fm2.
The cause of this discrepancy is not clear. It could be that the zero-range pseudo-potential of

eq. (15) is not adequate to describe exchange, although it seems unlikely that this would explain
the whole discrepancy. A large increase in the radii ofthe neutron density distributions would also
improve the agreement although the ones we have used are consistent with other knowledge of
neutron radii [3]. A density dependence of the interaction is capable of producing this kind of
difference [81] although our calculations using the density-dependent DDD interaction (section
3.3.3) give almost the same results (but see [82]). Finally, the discrepancy observed might be due
to neglect of contributions from the polarization potential ~u of eq. (3) [40]. Whatever the explana-



G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering 205

10
4

• ( b)5

\ 60Ni +P

2

10
3 \

\
5 \•
2 \ \•

10
3 \ \•

~
5 \ \~ •.c

\E

C;
2 •

~ \b 102
"C

5 \ 14.5 MeV•
2 \ ~~

1d
\ ..., \

••
5 .\ ,I-

• I

2 \ /
10°

t. !",.
5

0 20 40 60 80 100 120 140 160

8c.m. (deg)

6 44 MeV
N= 0 95

60 80 100 120 140
8e m (degl

4020

2

10° '--_...1..-_---'-_---'-__'--_-'---_-'-_--'

o

104

5

2 e,

103 \

\
5

\
2 ~

e

103 \
5 \e

2 e\ \
\ e

103

5 \
2 \

102

5

2

10'

5

Fig. 6. The data for (a) neutrons and (b) protons scattering from 6°Ni compared with cross sections predicted using our folded real
potential plus the spin-orbit and imaginary potentials of [78]. The folded real potentials were renormalized by the factors N indicated.

tion, it must be remembered that any new feature introduced into the nucleon-nucleus Jroblem
might also affect the calculations of the heavy-ion potentials to be discussed later.

Applications of both the M3Y and the DDD interactions to inelastic nucleon scattering [11, 83J
and (p, n) transitions to analog states [80J have been described elsewhere. The agreement with
experiment is good (except that the VOl component of the DDD interaction seems·to be too weak
[80J). Consequently, the interaction that we now apply to heavy-ion scattering gives a reasonably
good account of nucleon scattering also, except for giving nucleon optical potentials with mean
square radii that apparently are slightly too small.
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5. Application to alpha scattering

Before considering true heavy ions (A > 4), we discuss here two cases of alpha scattering which
are of particular interest.

5.1. The ex + ex interaction

It was shown recently [84] that the measured ex + ex scattering phase shifts for L = Q-6 could be
accurately reproduced by a simple, local, real potential of Gaussian shape for center of-mass
energies up to 20 MeV and are approximately fitted for energies up to 40 MeV. This includes a
good fit to the width and position of the 0+ resonance at 92 keV (i.e., the 8Be ground state). Their
potential is

U(R) = -122.6225 exp (-0.22R2
) MeV. (23)

We calculated the folded potential for the ex + ex system using the M3Y interaction of eq. (10)
and the zero-range approximation (15) for exchange. Two approaches were used for the density
distribution ofthe alpha particle; both used a proton distribution Pp based upon electron scattering
measurements [85] and assumed that Pn = Pp' In the first we took the model-independent charge
density (table IV of [85]) for r = 0 to 4.5 fm (yielding an RMS charge radius of 1.66 fm) and un
folded the finite proton (and neutron) charge distribution using the prescription of section 3.4.1.
This results in a depression in the center of the density distribution [85]. The second approach
assumed a Gaussian form for the density distribution (hence with no central depression) with a
range determined to give the "best" value [85] of the RMS charge radius of 1.67 fm. The corres
ponding alpha density is

p~(r) = 0.4229 exp (-0.7024r2
). (24)

The resulting folded potentials are almost identical (so that the shape of the density distribution
is not critical provided it is "reasonable" and has the correct RMS radius) and both are almost
exactly the same as the phenomenological potential (23). This may be illustrated by quoting
parameters for equivalent Gaussians, - Vo exp ( - yR2

), which have the same volume integral
and RMS radius as the folded potentials and which are almost indistinguishable from them.
The first density gives Vo = 121.3 MeV, y = 0.2207 fm- 2

, while the second gives Vo = 119.3 MeV,
y = 0.2183 fm- 2 •

Consequently, the folded potential with the M3Y interaction provides a good fit to ex + ex
scattering in this energy range. This is an interesting system because it presents a favourable
situation for the folded potential approach. The optical potential is real for center-of-mass energies
below 17.3 MeV (where the 7Li + P channel opens). The tight binding of 4He minimizes the
polarization contributions /).U to the potential. However, we have only included the effects of
single nucleon exchange so that other exchange terms have been neglected; this requires further
investigation.

5.2. The scattering of ex + 40Ca

This system is of interest because it exhibits [70] the so-called "anomalous large angle scatter
ing". It is now understood [26] that this is a consequence of relatively weak absorption in this
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case which allows the scattering to be sensitive to the optical potential at separations R that are
smaller than usual. Then the scattering indicates [70J that the potential in the interior is deep and
also that its shape deviates from the Woods-Saxon form.

As has been reported elsewhere [68J, the folded potential based upon the M3Y interaction is
very similar to the phenomenological potentials deduced [70J by fitting the scattering data. This
folded potential gives fits to the data of comparable quality without the need for any significant
renormalization. Very similar results are also obtained with the density-dependent DDD inter
action. It has been noted that small changes in the effective interaction [68J, or in the treatment
of the exchange [57J, would result in even better fits; however, the important feature for the present
work is that the scattering data demand a potential like the folded one obtained with the M3Y
interaction both in its shape and in the depth in the interior. This implies that the corrections from
~U to the real potential are not large, even in the interior, in agreement with the estimates of
Vinh Mau [23].

Nonetheless, it must be remarked that data for IX + 40Ca at higher energies (~ 100 MeV) rule
out [69J a potential as deep as our folded one, even though they also support the use of a shape
different from the Woods-Saxon one and similar to the folded shape. The folded potential is
",260 MeV deep at R = 0, while the empirical ones are closer to '" 120 MeV. A suitable density

dependence in the interaction will reduce the strength of the folded potential in the interior [86J
to a value acceptable for the high-energy data; however, it remains to be seen whether such a
modification can be made which will still fit the large-angle scattering at the lower energies as well
as remaining compatible with both nucleon and heavy-ion scattering.

6. Applications to heavy-ion scattering

6.1. Procedure

The real folded potentials UF(R) to be discussed here were (unless otherwise noted) constructed
using the M3Y interaction of eq. (10) plus the zero-range exchange term (15) with j 00 = - 262 MeV
fm3 which are based upon the even-state Reid and odd-state Elliott forces. The density distributions
described in section 3.4 were used.

When comparing with experimental data, the potential UF(R) was fed into the optical model
search code GENOA [87]. It was then multiplied by a renormalization factor N which could be
varied in order to optimize the fit to the data. Then the value N ~ 1.0 would indicate success for
the model, while any systematic deviation of N from unity would imply that corrections to the
model were required. Some fluctuations of N about unity can be expected because of idiosyncracies
and uncertainties in the data and in the fitting procedures used and because of uncertainties in
the densities used in calculating the potentials.

The criterion of fit is the usual one; we minimize the quantity

(25)

where O"th(8;) are the calculated differential cross sections, O"ex(8i) are the measured ones and ~O"ex(8i)

are the uncertainties ("errors") associated with them.
In some cases at least, it might be argued that we should do coupled-channels calculations
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(25)

where O"th(8;) are the calculated differential cross sections, O"ex(8i) are the measured ones and ~O"ex(8i)

are the uncertainties ("errors") associated with them.
In some cases at least, it might be argued that we should do coupled-channels calculations
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rather than use the one-channel optical model approach. Some of the nuclei studied here, such as
12C and 28S~ exhibit large inelastic cross sections for exciting low-lying 2+ states. (We have deli
berately avoided other systems such as 12C + 150Nd for which coupled channels are essential
[88]; even in that case, however, the effect on the real potential did not seem to be large.) However,
exploratory calculations with l2C + 12C and with 160 + 28Si indicated that while coupling
effects need not be negligible, especially upon the imaginary potential, they would not qualitatively
change any of our results. This conclusion is reinforced by some other recent coupled channel
calculations for 160 + 28Si [89] (see also P.D. Bond in [15]). In this case, explicitly including the
coupling led to a reduction of 10 to 15 ~~ in the real potential required, while the work on
12C + l2C [72] suggested the opposite effect. Of course, the coupling effects observed will depend
upon the type of optical potential used as well as the system being studied. Another reason for
believing that our results are not strongly affected by these couplings is that the renormalizing
factors N which are obtained by optimizing the fits to data (table 3) do not show any obvious
correlation with the "collectivity" of the nuclei involved.

6.2. The imaginary potential

Since the effective interaction used here is real, the imaginary, absorptive, part of the optical
potential has to be treated phenomenologically. The simplest assumption is that it has the same
shape as the real folded potential so that only its strength is an adjustable parameter. Indeed, this
is found to be sufficient for good fits to scattering data in a number of cases. However, for other
cases it is found that significantly better fits can be obtained if a Woods-Saxon shape is used;
when the scattering is determined by peripheral collisions, this indicates a need for real and
imaginary potentials with different slopes in the vicinity of the strong absorption radius. Finally,
there are a few cases (e.g. 12C + 12C and 160 + 28Si) where acceptable fits cannot be obtained
at all with real and imaginary potentials of the same shape.

A Woods-Saxon form

1m U(R) = - W(e X + 0- 1
, x = (R - Rw)/aw (26)

is characterized by three parameters, W, Rw and aw, and this is one too many to be determined
unambiguously in most cases. Consequently, whenever possible, we chose to fix the imaginary
potential radius parameter rw, where Rw = rw(A~/3 + A~/3). In almost all cases, the value
rw = 1.30 fm was found to be satisfactory. Exceptions occurred when fitting some data for
12C + 28Si and 160 + 28Si, for which a smaller value of rw ~ 0.90 fm seemed to be required. The
value of rw = 1.22 fm was adopted for the lightest systems simply to be consistent with the analyses
of l2C + 12C scattering reported elsewhere [72].

The surface diffuseness parameter was initially set at aw = 0.60 fIn and left at that value unless
the fit to the data demanded a change. (Again, aw = 0.54 fm was used for the lightest systems for
comparison with the earlier 12C + l2C analyses [72].) In all cases where a change was required
(except for the "anomalous" 12C, 160 + 28Si cases just mentioned) it was in the direction of
reducing aw, that is of making the imaginary potential steeper in the surface.
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6.3. Previous results

The M3Y interaction (10), together with the zero-range exchange term (15), has previously been
applied [90] to 160 + 63,65CU scattering at energies of 2.5 to 2.9 MeV per nucleon. The density
distributions used appear to be similar to those we use here, but the exchange pseudo-potential is
somewhat stronger, j 00 = 409 MeV fm 3. This would result in a potential at the strong absorption
radius about 10 %larger than the value we use. These authors find good agreement with the data,
with optimum N values differing from unity by only a few per cent.

The scattering of 160 + 59CO at 2.25 to 3.5 MeV per nucleon has also been fitted [91] in a
similar way with similar results. We have re-analyzed these data and will return to them later.

In other studies, this M3Y interaction has been used to estimate the quadrupole scattering for
10,11Band 12C on 27AI and hence to explain differences seen in the elastic scattering at large
angles [92]. It has also been used to estimate the vector spin-orbit coupling for various heavy ions
[93].

The extensive analyses of 12C + 12C scattering from 5 to 10 MeV per nucleon already published
[72] used the interaction (11) instead of (10), i.e. with only the 0 PEP in odd-states. This produces
a potential 3%deeper at R = 0 but slightly less deep for R > 6.5 fm. Although in this case the
scattering near 900 is sensitive even to these small changes, the overall effect on the optimum N
values deduced is small (at most, a few per cent). Consequently, we did not reanalyze these data
with the other interaction (10).

Previously published analyses of 160 + 28Si [35,94] and 160 + 59CO, 6°Ni [35,48] were also
made with the interaction (11) and in addition the single nucleon exchange contribution (15) was
neglected. Further, density distributions were used which were slightly different from those used
here, so, for consistency, these data have been reanalyzed.

6.4. Present results

The results of fitting data for some 30 different systems, often at more than one energy, are
summarized in table 3. Some examples of the fits are shown in figs. 7-18. (Additional results for
6,7Li and 9Be scattering are discussed later.) The sources of the data are indicated in the table.
The particular sets of data used were chosen (mainly) because numerical values of the cross sections
were available. (It would have been particularly interesting to have been able to study some heavier
systems, such as Kr + Bi or Xe + Pb, but because of experimental difficulties, there are no data
available in which the elastic scattering has been fully resolved from nonelastic scattering. Another
problem with such heavy systems is that the long-range absorption associated with Coulomb
excitation makes the scattering less sensitive to the real potential [24].)

In most cases the scattering only determines the potential in the vicinity ofthe strong absorption
radius (see, for example [8, 90]). As has been stressed before [47,95], when the angular distribution
resembles that of Fresnel diffraction, the magnitude of the oscillations about the Rutherford
cross section before the onset of the "shadow" are especially important in determining the strengths
of both the real and the imaginary potential near the strong absorption radius. (Contrary to state
ments by adherents of either the "Fresnel" or the "rainbow" interpretation, the characteristics of
the scattering are not determined in general by either the imaginary potential alone or the real
potential alone; both are required for good fits to the data.) Combined with the rate of fall of the
cross section in the shadow region, the data also put constraints upon the slope of the imaginary
potential. (The slope of the real potential is, of course, determined by the folding procedure.)

G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering 211

6.3. Previous results

The M3Y interaction (10), together with the zero-range exchange term (15), has previously been
applied [90] to 160 + 63,65CU scattering at energies of 2.5 to 2.9 MeV per nucleon. The density
distributions used appear to be similar to those we use here, but the exchange pseudo-potential is
somewhat stronger, j 00 = 409 MeV fm 3. This would result in a potential at the strong absorption
radius about 10 %larger than the value we use. These authors find good agreement with the data,
with optimum N values differing from unity by only a few per cent.

The scattering of 160 + 59CO at 2.25 to 3.5 MeV per nucleon has also been fitted [91] in a
similar way with similar results. We have re-analyzed these data and will return to them later.

In other studies, this M3Y interaction has been used to estimate the quadrupole scattering for
10,11Band 12C on 27AI and hence to explain differences seen in the elastic scattering at large
angles [92]. It has also been used to estimate the vector spin-orbit coupling for various heavy ions
[93].

The extensive analyses of 12C + 12C scattering from 5 to 10 MeV per nucleon already published
[72] used the interaction (11) instead of (10), i.e. with only the 0 PEP in odd-states. This produces
a potential 3%deeper at R = 0 but slightly less deep for R > 6.5 fm. Although in this case the
scattering near 900 is sensitive even to these small changes, the overall effect on the optimum N
values deduced is small (at most, a few per cent). Consequently, we did not reanalyze these data
with the other interaction (10).

Previously published analyses of 160 + 28Si [35,94] and 160 + 59CO, 6°Ni [35,48] were also
made with the interaction (11) and in addition the single nucleon exchange contribution (15) was
neglected. Further, density distributions were used which were slightly different from those used
here, so, for consistency, these data have been reanalyzed.

6.4. Present results

The results of fitting data for some 30 different systems, often at more than one energy, are
summarized in table 3. Some examples of the fits are shown in figs. 7-18. (Additional results for
6,7Li and 9Be scattering are discussed later.) The sources of the data are indicated in the table.
The particular sets of data used were chosen (mainly) because numerical values of the cross sections
were available. (It would have been particularly interesting to have been able to study some heavier
systems, such as Kr + Bi or Xe + Pb, but because of experimental difficulties, there are no data
available in which the elastic scattering has been fully resolved from nonelastic scattering. Another
problem with such heavy systems is that the long-range absorption associated with Coulomb
excitation makes the scattering less sensitive to the real potential [24].)

In most cases the scattering only determines the potential in the vicinity ofthe strong absorption
radius (see, for example [8, 90]). As has been stressed before [47,95], when the angular distribution
resembles that of Fresnel diffraction, the magnitude of the oscillations about the Rutherford
cross section before the onset of the "shadow" are especially important in determining the strengths
of both the real and the imaginary potential near the strong absorption radius. (Contrary to state
ments by adherents of either the "Fresnel" or the "rainbow" interpretation, the characteristics of
the scattering are not determined in general by either the imaginary potential alone or the real
potential alone; both are required for good fits to the data.) Combined with the rate of fall of the
cross section in the shadow region, the data also put constraints upon the slope of the imaginary
potential. (The slope of the real potential is, of course, determined by the folding procedure.)



212 G.R. Sutchler and w.G. Love, Folding model potentials from realistic interactions for heavY-IOn scuttenng

5

brr. 5

~ 5
"C

5

5

o fO 20 30

8e m. (deg)

40 50

(27)

Fig. 7. Comparison between predicted and measured cross sections for some light heavy-ion systems. The real potential normalizations
and imaginary potential parameters are given in table 3.

Table 3 summarizes the results, giving the optimum values of the real, folded potential normaliza
tion factors N, as well as the values of the parameters W, rw, aw for the imaginary potential. Also
listed in each case are the absorption (reaction) cross section (J' A' the angular momentum L 1/ 2

for which the transmission coefficient TL J/2 = ! (obtained by linear interpolation between the
values for integral L) and the distance of closest approach D1/2 for the Rutherford orbit with the
angular momentum L 1/ 2 ,

D - 1 [ (2 12 )1/2]
1/2 - k n + n + Ll/2 ,

where n is the usual Sommerfeld parameter and k is the wave number. We use this distance D1/ 2
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as our measure of the strong absorption radius. Table 3 includes the value of the real potential at
R = D1/2, the ratio of imaginary to real potential at that radius and ri, the inverse ofthe logarithmic
derivative of the real part there,

(28)

as an indicator of the slope of the real potential. (If the real potential were truly exponential near
R = D1/2 , it would have the form""' exp (- R/(X,).)

6.4.1. The real potential normalization
The mean and RMS deviation of the N values in table 3 is

N ~ 1.11 ± 0.13, (29)

indicating that on the average the folding model with the M3Y interaction predicts the heavy ion
real potential quite accurately. Indeed, even the deviation of +10 % of the mean N from unity
could be due to an underestimate of the exchange contribution when using the zero-range approxi
mation (15), as we have already anticipated. Only five cases have N values differing from the mean
by 20% or more. Two of these e60 + 88Sr at 48 MeV and 160 + 59CO at 45.5 MeV) appear
anomalous in the sense that results for the same systems at other energies do not show as large
deviations. The largest deviation occurs for 11 B + 209Bi with N = 1.45 and might indicate some
error in the density distribution we have used for 11 B. We assumed 11B to be the same as 12C
except for a proton hole in the IP3/2 shell. If, instead, we take the IP3/2 binding energies in 11 B
to be equal to the observed separation energies for a neutron or a proton from 11 B, then the RMS
radius of 11 B increases from 2.28 to 2.47 fm, and the folded potential for 11 B + 209Bi increases by
40 % at the strong absorption radius. This procedure implies too large a charge radius (2.55 fm)
for 11B [59,96], but it does emphasize again the sensitivity ofthe potential to the density assumed.

More detailed discussion of some specific cases is given below.

6.4.2. Energy dependence
We find no compelling need for any dependence on bombarding energy of either the real or the

imaginary potential (with the exception of the imaginary potentials for 12C + 12C [72J and for
the case 160 + 28Si [94] to be discussed later). Figures 8, 13, 15, 17 and 18 show various sets of
data which span ranges of energy yet which are fitted well in each case by a single, energy-indepen
dent potential. That is not to say that the data are not compatible with a weak energy dependence.
Table 3 shows that the optimum N values fluctuate somewhat with energy; the fluctuations appear
to be "random", but they do indicate that the data could accommodate a slow variation of N with
energy. Indeed, the earlier analyses of 12C + 12C [72] did seem to suggest a slow increase of N
with energy.

However, it should be remembered that we are not considering a very wide range of energy per
nucleon; the largest range is for 160 + 40Ca where E/A ~ 3.5 to 13.4 MeV. For example, argu
ments [97] based upon empirical nucleon-nucleus potentials would suggest a reduction in the real
potential strength of only about 6 % in this energy range.

6.4.3. Light systems
The light systems illustrated in fig. 7 exhibit angular distributions with diffraction-like oscilla

tions. Only a limited angular range is covered and, in some cases, the absolute normalizations of
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the data are not precisely determined. Fortunately, this uncertainty mainly affects the strength of
1m U, while Re U is determined primarily by the position of the diffraction peaks; nonetheless
there remains some uncertainty in the values of N. In particular, the data for lOB + 12C were not
fitted; the curve shown is for the same potential parameters as for 14N + 12c.

The 12C + 12C scattering at 70-126 MeV was discussed earlier [72]. The interesting but noto
riously difficult cases of 12C + 12C at lower energies and of 160 + 160 have not yet been studied
carefully.

6.4.4. Scattering of 16,170 + 40,48Ca
Figure 8 shows that the potential which gives the optimum fit to the 160 + 40Ca data for

74.4 MeV also gives good fits to the data at other energies. The optimum (minimum X2
) parameter

values (table 3) for these other energies do not result in significantly better fits except at 55.6 MeV
where the oscillations about the Rutherford cross section are better reproduced by increasing N.
This latter point is emphasized by the linear plot in fig. 9 where we see that the value N = 1.14,
which is optimum at 74.4 MeV and sufficient at the other energies, predicts too small amplitude

214 G.R. Satchler and W.G. Love, Folding model potentials from realistic interactions for heavy-IOn scattering

160+ 40CO

5

2
40 MeV

10°

5

10°

5
10°

5

10°

5
10°

tf 5
u
'8 10°
u

5

2

10-3 '-----'-_-U1..L-....l...----JL---'-_-I..-_.L----JL---'-_-I..-_..l.......---l

o 10 20 30 40 50 60 70 80 90 100 110 120

Be m (deg)

Fig. 8. The scattering of 16 0 + 40Ca The curves are predictIOns using the potential (table 3) fitted to the data at 74 MeV.

the data are not precisely determined. Fortunately, this uncertainty mainly affects the strength of
1m U, while Re U is determined primarily by the position of the diffraction peaks; nonetheless
there remains some uncertainty in the values of N. In particular, the data for lOB + 12C were not
fitted; the curve shown is for the same potential parameters as for 14N + 12c.

The 12C + 12C scattering at 70-126 MeV was discussed earlier [72]. The interesting but noto
riously difficult cases of 12C + 12C at lower energies and of 160 + 160 have not yet been studied
carefully.

6.4.4. Scattering of 16,170 + 40,48Ca
Figure 8 shows that the potential which gives the optimum fit to the 160 + 40Ca data for

74.4 MeV also gives good fits to the data at other energies. The optimum (minimum X2
) parameter

values (table 3) for these other energies do not result in significantly better fits except at 55.6 MeV
where the oscillations about the Rutherford cross section are better reproduced by increasing N.
This latter point is emphasized by the linear plot in fig. 9 where we see that the value N = 1.14,
which is optimum at 74.4 MeV and sufficient at the other energies, predicts too small amplitude



G.R. Satchler and WG. Love, Folding model potentials from realistic interactions for heavy-ion scattering 215

1.4
I I 1 ! I I 1 1

!
iY'! 160 +40Ca1.2 -
1;"~

-
: \', ~/ '\ 55.6 MeV

1.0 - ".!....tt_t~1 ! -
.~, \t-',

0.8 - -

bll::

\~
b
." 0.6 - • -

-- N=1.50 \0.4 - N= 1.14 -

... __ .. N= 1.0 •

\0.2 - -•

"0 I I I 1 1 1·...........·-__..

0 10 20 30 40 50 60 70 80
8c.m. (deg) ,

Fig. 9. The scattering predicted for 160 + 40Ca at 55.6 MeV for various normalizations N of the folded, real potential. In each case,
the imaginary potential parameters were varied to optimize the fit to the data. N = 1.50 is the optimum value when the imaginary
diffuseness is also allowed to vary (see text), while N = 1.14 is the optimum value for the data at 74 MeV (fig. 8).

for these oscillations. Indeed, these oscillations alone would imply N > 1.5. Minimum l is
obtained with N = 1.27 if we constrain aw = 0.54 fm (table 3) giving a peak with do-jdO'R = 1.23.
Allowing aw to vary as well results in N = 1.50, W = 27.8 MeV, aw = 0.396 fm and a peak
dO'jdO'R = 1.27 (the solid curve in fig. 9).

The cross sections at 55.6 MeV have been remeasured [98] and the results shown here have been
confirmed. Further, data are also available at 60 MeV [99], and fits to these show characteristics
similar to those at 55.6 MeV, so that perhaps something is changing for the 160 + 40Ca system
as the bombarding energy falls below 70 MeV. Meanwhile, measurements from 200 to 180°
at 50 MeV have revealed an "anomalous large-angle scattering" which indicates a reduction in
the absorption at this energy, at least in the surface [100]. The potential that fits the 74.4-MeV
data (table 3 and fig. 9) gives cross sections at large angles at 50 MeV that are from one to two
orders of magnitude too small. However, simply reducing the strength of Wfrom 12.9 to 7.5 MeV
does produce cross sections with qualitatively the correct behaviour although it is far from a good
fit to the data. Clearly, other readjustments are necessary. A similar reduction in W also improves
the fit to the peak cross section at 55.6 MeV even with N = 1.14 but again does not provide an
optimum fit to the data overall. Ifa greater transparency at these energies is the correct explanation,
then this may provide another situation in which we can test the potential at distances inside the
strong absorption radius.

Figure 10 shows that the potential (table 3) that fits the 56-MeV data for 160 + 48Ca also fits
the 40-MeV data. This potential has N = 0.98, compared to 1.14 for 160 + 40Ca. This may be
due to Negele's 48Ca density being a little too large; we have a 48Ca - 40Ca RMS radius difference
of 0.2 fm compared to a value 0.1 fm recently deduced [65] from 1 GeV proton scattering.

Figure 11 shows the cross sections predicted at 177° near the Coulomb barrier using the poten-
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tials which fit the scattering data at higher energies (74.4 MeV for 40Ca, 56 MeV for 48Ca; table 3);
there is reasonable agreement with the measurements [101]. (These energies are below those at
which the "anomalies" for 40Ca are observed [100].)

There is also one measurement for 170 + 40Ca. The 170 density was taken to be the same as
the shell model density for 160 with the addition of a 1d S/2 neutron bound in the same shell model
potential. This gives a folded potential which is 24 ~~ larger for 170 near the strong absorption
radius of 9.5 fm. The optimum fit to the data (table 3) yields N = 1.10, very close to the value
1.14 for 160 on the same target. It is encouraging that this isotope dependence is so closely repro
duced.
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6.4.5. Scattering Of 160 + 59CO, 6°Ni
The analysis of 160 + 59CO and 60Ni at 142 MeV with folded potentials has been discussed in

detail elsewhere [35]. The analysis was repeated with the improved densities described in section
3.4, with the interaction (10), and with the imaginary radius parameter rw = 1.30 fm adopted here
as standard. The fits to the data are indistinguishable from those shown before [35] and optimum
N values of unity are obtained (table 3). The earlier work also showed that the potential which fit
at 142 MeV also fitted data at 61 MeV and for various energies between 40 and 56 MeV [35].
The same remains true for the present, slightly revised potential; the optimum value is N = 1.04
at 61 MeV but 1.00 gives essentially the same results. (The optimum real potential values at the
strong absorption radii are included in fig. 2.)

Data for 160 + 59CO are now also available [91] for energies from 40 to 56 MeV. Contrary
to the case for 6°N~ it was found necessary to reduce the value of aw to about 0.50 fm in order
to fit these data. A simple variation of W is not sufficient; aw = 0.60 fm causes the theoretical cross
sections to fall off too fast. Fluctuations in the best-fit parameter values were obtained similar to
those found by the original authors [91] (who used a similar folded potential). These fluctuations
were reduced when aw was frozen at the value 0.50 fm (table 3). Indeed, fig. 12 shows that very
good fits can be obtained with a single potential in which N = 1.0 and W = 12 MeV were fixed,
except at the one bombarding energy of 45.5 MeV. The dashed curve in fig. 12 shows that a good
fit at this energy requires a reduction of both N to 0.87 and W to 11.1 MeV (table 3). The origin
of this discrepancy is not understood.

6.4.6. The 12C + 142Nd system
This case is of interest because it illustrates the sensitivity to the neutron distribution assumed.

The Batty-Greenlees [64] shell model potential we have adopted (section 3.4) with V = 60 MeV
for the protons gives a charge radius for 142Nd of (r 2 )1/2 = 4.93 fm, in agreement with electron
scattering [59]. (A configuration of (lg7/2)8(2d5/2)2 outside the closed Z = 50 shell was assumed.)
Further, a binding energy of 7.3 MeV is obtained for the 2d5/2 proton, agreeing with the observed
proton separation energy. At first it was thought that V = 50 MeV and the same geometry would
be a reasonable choice for the neutron potential. This gave a neutron RMS radius which exceeded
the proton one by 0.14 fm, again apparently reasonable. However, the resulting folded potential
required a renormalization factor of N = 1.39 in order to fit the scattering data [88], and especially
to match the large magnitude of the oscillations about the Rutherford value. Further, the choice
V = 50 MeV leads to a binding of 13.1 MeV for the least-bound neutrons, while the observed
separation energy is 9.8 MeV.

Reducing the neutron well-depth to V = 45 MeV gives the appropriate binding for the least
bound neutron and an RMS radius 0.26 fm larger than that for the protons. Then the optimum N
value for the folded potential (table 3) is 1.15, or 20 %smaller and now acceptably close to the
average value. (The fit to the data is indistinguishable from that shown in [88].) It now becomes
of considerable interest to know whether such a large neutron-proton radius difference can be
confirmed independently, perhaps by high-energy proton scattering, and thus test the usefulness
of heavy-ion scattering as a probe of such differences.

6.4.7. Some more massive projectiles
As noted earlier, data for very heavy systems are not available. We do have 40Ca + 40Ca data

for .several energies; fig. 13 shows the Orsay data compared with folding model predictions. The
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Fig. 12. Comparison with data for 160 + 59CO at various energies. The solid curves are for N = 1.0, W = 12 MeV, rw = 1.3 fm,
aw = 0.50 fm, while the dashed curve is for the potential listed in table 3 for 45.5 MeV.

potential parameters (table 3) were obtained by fitting the scattering at 143,6 MeV. The data at
the other energies are not complete enough to determine potential parameters in a meaningful way,
but they are in reasonable agreement with the predicted cross sections. The N value of 1.32 de
duced is rather large, and might be taken as indicating that Negele's density for 40Ca is somewhat
too small. For example, his calculations result in a neutron distribution with a slightly smaller
radius than the proton one (table 1). If we take the neutrons to have the same distribution that he
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finds for the protons, the folded potential in this case is increased by 1O~~ at the strong absorption
radius, which would reduce N to about 1.20. (The changes for other systems involving only one
40Ca nucleus would be about half this.)

It is also interesting to note that the density-dependent DDD interaction gives almost the same
folded potential for 40Ca + 40Ca as the M3Y interaction; at the strong absorption radius the
DDD one is 6 % stronger.

Results for some other systems of comparable mass with 32S as projectile are illustrated in
fig. 14. We were unable to fit accurately both the oscillation about the Rutherford cross section
and the fall-off in the shadow regiQfl for 32S + 40Ca; the minimum X2 fit shown is a compromise
in this respect. We note that here N for 48Ca (table 3) is 13 % smaller than for 40Ca, just as it was
for 160 as projectile. The fit to 32S + 32S is satisfactory but is not very sensitive to the value of N;
further, there seems to be some uncertainty (;:5 10%) in the absolute normalization of the data.
The parameters given in table 3 are representative.

All of the systems discussed here seem to require an absorptive potential with a sharper edge
(smaller Ow value) than is usually nece~sary for lighter projectiles.
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Fig. 14. The scattering of 32S from several targets. The curves were obtained by fitting the data (table 3).

6.4.8. The target 208Pb
There are many measurements of 160 + 208Pb from the Coulomb barrier (,,- 80 MeV) up to

313 MeV (or E/A of 5 to 20 MeV) so that this would seem to be an ideal system for testing the
folded potential. Unfortunately, there seem tO,be many inconsistencies between these sets of data,
resulting in fluctuations in the potential parameters needed to fit them (see [47, 102, 103] for exam
ple). Consequently, it seems impossible to learn anything unambiguously such as, for example,
whether there is evidence for an energy dependence. Fits to the data for, 129.5 and 192 MeV [47]

220 G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heav.l,-ion scattering

finds for the protons, the folded potential in this case is increased by 1O~~ at the strong absorption
radius, which would reduce N to about 1.20. (The changes for other systems involving only one
40Ca nucleus would be about half this.)

It is also interesting to note that the density-dependent DDD interaction gives almost the same
folded potential for 40Ca + 40Ca as the M3Y interaction; at the strong absorption radius the
DDD one is 6 % stronger.

Results for some other systems of comparable mass with 32S as projectile are illustrated in
fig. 14. We were unable to fit accurately both the oscillation about the Rutherford cross section
and the fall-off in the shadow regiQfl for 32S + 40Ca; the minimum X2 fit shown is a compromise
in this respect. We note that here N for 48Ca (table 3) is 13 % smaller than for 40Ca, just as it was
for 160 as projectile. The fit to 32S + 32S is satisfactory but is not very sensitive to the value of N;
further, there seems to be some uncertainty (;:5 10%) in the absolute normalization of the data.
The parameters given in table 3 are representative.

All of the systems discussed here seem to require an absorptive potential with a sharper edge
(smaller Ow value) than is usually nece~sary for lighter projectiles.

5

2

5L-_"'---_"'---_.L.-_.L.-_..L-_....LL_--'---_--'---_...l-_-L.-.J
10 20 30 40 50 60 70 80 90 100 ~IO

8e. m. ldeg)

Fig. 14. The scattering of 32S from several targets. The curves were obtained by fitting the data (table 3).

6.4.8. The target 208Pb
There are many measurements of 160 + 208Pb from the Coulomb barrier (,,- 80 MeV) up to

313 MeV (or E/A of 5 to 20 MeV) so that this would seem to be an ideal system for testing the
folded potential. Unfortunately, there seem tO,be many inconsistencies between these sets of data,
resulting in fluctuations in the potential parameters needed to fit them (see [47, 102, 103] for exam
ple). Consequently, it seems impossible to learn anything unambiguously such as, for example,
whether there is evidence for an energy dependence. Fits to the data for, 129.5 and 192 MeV [47]



G.R. Satchler and w.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering 221

1.6

1.4 160 +208pb

1.2

A~l\
r. r\. \

• i \ • •
1.0 - .....J~/ -.J>.~\j \• • •

be::
.. , \•~ 0.8

\ •
b 312.6 MeV • 192 MeV 129.5 MeV

\-0

0.6 ..•
\ •

0.4 \
\ •\

0.2 • \• \.... ,.--.
I ••

0 • ..1.Jv I I I '.-L.-L_~ I -;......J.
0 5 10 15 20 25 20 25 30 35 40 40 50 60 70

8e m (deg)

Fig. 15. The scattering of 160 + 208Pb at three energies. The curves are fits obtained with the parameters of table 3.

and for 312.6 MeV [103] are shown in fig. 15, with the parameters given in table 3. The optimum
N values are close to unity, N = 1.05 ± 0.09. The 129.5-MeV data seem to demand a real potential
about 20% stronger than needed at 192 MeV, whatever form of potential is used [47]. We believe
this is an idiosyncracy of the data (perhaps due to small errors in absolute normalization), not a
true energy dependence; there is no evidence for such a strong energy dependence from analysis
of the data at other energies. table 3 also seems to indicate a strong energy dependence for Jv,
but again the. data at other energies do not support this.

Figure 16 shows fits for 12C + 208Pb at .96 and 116.4 MeV; the 96-MeV potential (table 3)
also gives an acceptable fit to other data at 78 MeV. The N value of 1.25 is a little high; similar
values are obtained (table 3) for 11 B + 208Pb and 13C + 207Pb, and we have already remarked
earlier that 11 B + 209Bi requires N = 1.45. It remains to be seen whether these values represent
inadequacies in the density distributions used or whether perhaps they are a consequence of the
collectivity of 12C-like nuclei. However, it is interesting to note that these particular discrepancies
are largely removed if we use the alternate shell-model density distribution for 208Pb that was
described in section 3.4.4. For this, the neutron distribution was generated using a potential well
with the same Batty-Greenlees dimensions as was used for the protons and resulted in a difference
of 0.29 fm between the neutron and proton RMS radii. This new density increases the folded
potentials near the strong absorption radii by 20 to 25% and results in optimum N values of 1.17,
1.01 and 1.05 for 11 B, 12C and l3C, respectively. However, the optimum N values for 1,0 are
then reduced to 0.94, 0.78 and 0.87 at 129.5, 192 and 312.6 MeV, respectively, so that the discre
pancies between 160 and the 12C-like projectiles remain at approximately 20 %.

6.4.9. Some other systems
The scattering of 12C from 40Ca and 90Zr is reasonably well reproduced (fig. 17). In both cases

some diffraction structure is seen at larger angles although only the 40Ca data show evidence for
this.
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Figure 18 shows results for 160 + 88Sr and 15N + 89y' These data require N ~ 1.2 (the X2

minimum gives N = 1.36 for 160 + 88Sr at 48 MeV, but N ~ 1.2 gives an equally acceptable fit).
The other noteworthy feature is the need for a small diffuseness (aw ~ 0.4 fm) for the imaginary
potential in these cases.
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The other noteworthy feature is the need for a small diffuseness (aw ~ 0.4 fm) for the imaginary
potential in these cases.
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6.4.10. The target 28Si
This target has received special attention recently because of the discovery of the "anomalous

large-angle scattering" (see [15, 100] for example) of 12C and 160 from this nucleus. Earlier analyses
with a folded potential [94] of extensive data for 160 + 28Si at energies from 33 to 215 MeV
showed that the overall features of the forward scattering data could be fitted; a reanalysis of the
141.5- and 215.2-MeV data with the M3Y interaction (10) used here gives similar results (table 3).
In both cases we find N < 1.0 and an imaginary potential with small rw ~ 0.9 fm and large
aw ~ 1.0 fm is required. A similar potential (table 3) fits the 131.5-MeV data for 12C + 28Si.
(None of these high-energy data extend into the small angles where the cross section oscillates
about the Rutherford value; consequently, this important constraint on the potential is missing.)

However, none of these earlier fits reproduced the oscillatory structure seen at the larger angles
and for energies from 50 to 70 MeV; this structure was confirmed beautifully by later measurements
[104]. Then data became available [lOS] for angles out to nearly 180°, revealing the "anomalous
large-angle scattering".

We have not yet succeeded in obtaining a good fit to these new data. However, earlier we examin
ed some of the data for energies from 53 to 81 MeV, restricting attention to angles less than 50°,
as well as the whole angular range at 37.7 MeV. The intent was to see whether our "standard"
imaginary potential with rw = 1.3 fm and aw = 0.6 fm could be used, instead of the somewhat
unusual parameters required for the high-energy fits, and what the resulting N values would be.
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Indeed good fits were obtained with optimum N ~ 1.0 and with imaginary strengths W of about
8 MeV; the parameters are included in table 3. The rather small value of Wsuggests the possibility
oflarge-angle effects from the internally reflected waves [26, 71] and indeed examination shows that
these potentials do predict scattering analogous to that seen experimentally [105]. The cross
sections at 1800 are of order 10- 2 of the Rutherford value, although the oscillations at large
angles do not completely match the ones observed; it will be important for our understanding
of the potential to see what further modification is required to fit the data.

A recent analysis [106] of the 50- and 55-MeV data at forward angles using a Woods-Saxon
potential form concluded that the real potential was -0.75 MeV at R = 9.02 fm (50-MeV data)
and -0.8 MeV at R = 8.92 fm (55-MeV data). These values may be compared to our folded
potential values (with N = 1.0) of -0.70 and -0.80 MeV, respectively. The authors then showed
that a reasonable fit to the large-angle data could be obtained with potentials constrained to be
equal to these values. In other words, our folded potential is correct at large separations R ~ 8 fm;
it remains to be seen whether the large-angle data can be explained by adjustment only of the
imaginary potential (e.g. by making it L-dependent) without modifying the real folded potential
at smaller R.

7. Scattering of 6,7Li and 9Be

The scattering of Li ions is of particular interest because 6Li appears to be "anomalous" in the
sense that folded potentials for this projectile, using the same interaction which we have just seen
to be successful for many other ions, need to be renormalized by N ~ 0.6 [73]. This is a substantial
deviation from unity and is necessary for essentially all the targets studied thus far.

We have made only a few studies of 7Li scattering, from 40,48Ca at 28 and 34 MeV, and from
90Zr at 34 MeV, but we see no evidence that this isotope of Li is "anomalous" in the same way.
The results are included in table 4; in each case the value of N is close to unity. We note also that
in each case an appreciable improvement in fit is obtained by allowing the value of aw to be larger
than 0.6 fm.

7.1. Density distributions for Li nuclei

7.1.1. The 6Li nucleus
Because of the suggestion [73] that 6Li scattering is anomalous, particular care was taken to

explore several ways of constructing density distributions for this nucleus. The first was to take
the proton distribution from the charge distribution determined by electron scattering [124] and
then assume that the neutron distribution was the same. The charge distribution used [124] was

(30)

with a = 0.928 fm, b = 1.26 fm and c = 0.48 fm. This corresponds to an RMS charge radius of
2.56 fm. The finite size of the neutron and proton charge distributions was unfolded as discussed
in section 3.4.1 so as to give the distribution of the centers of mass of the protons. The latter then
has an RMS radius of 2.43 fm.

224 G.R. Satchler and W.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering

Indeed good fits were obtained with optimum N ~ 1.0 and with imaginary strengths W of about
8 MeV; the parameters are included in table 3. The rather small value of Wsuggests the possibility
oflarge-angle effects from the internally reflected waves [26, 71] and indeed examination shows that
these potentials do predict scattering analogous to that seen experimentally [105]. The cross
sections at 1800 are of order 10- 2 of the Rutherford value, although the oscillations at large
angles do not completely match the ones observed; it will be important for our understanding
of the potential to see what further modification is required to fit the data.

A recent analysis [106] of the 50- and 55-MeV data at forward angles using a Woods-Saxon
potential form concluded that the real potential was -0.75 MeV at R = 9.02 fm (50-MeV data)
and -0.8 MeV at R = 8.92 fm (55-MeV data). These values may be compared to our folded
potential values (with N = 1.0) of -0.70 and -0.80 MeV, respectively. The authors then showed
that a reasonable fit to the large-angle data could be obtained with potentials constrained to be
equal to these values. In other words, our folded potential is correct at large separations R ~ 8 fm;
it remains to be seen whether the large-angle data can be explained by adjustment only of the
imaginary potential (e.g. by making it L-dependent) without modifying the real folded potential
at smaller R.

7. Scattering of 6,7Li and 9Be

The scattering of Li ions is of particular interest because 6Li appears to be "anomalous" in the
sense that folded potentials for this projectile, using the same interaction which we have just seen
to be successful for many other ions, need to be renormalized by N ~ 0.6 [73]. This is a substantial
deviation from unity and is necessary for essentially all the targets studied thus far.

We have made only a few studies of 7Li scattering, from 40,48Ca at 28 and 34 MeV, and from
90Zr at 34 MeV, but we see no evidence that this isotope of Li is "anomalous" in the same way.
The results are included in table 4; in each case the value of N is close to unity. We note also that
in each case an appreciable improvement in fit is obtained by allowing the value of aw to be larger
than 0.6 fm.

7.1. Density distributions for Li nuclei

7.1.1. The 6Li nucleus
Because of the suggestion [73] that 6Li scattering is anomalous, particular care was taken to

explore several ways of constructing density distributions for this nucleus. The first was to take
the proton distribution from the charge distribution determined by electron scattering [124] and
then assume that the neutron distribution was the same. The charge distribution used [124] was

(30)

with a = 0.928 fm, b = 1.26 fm and c = 0.48 fm. This corresponds to an RMS charge radius of
2.56 fm. The finite size of the neutron and proton charge distributions was unfolded as discussed
in section 3.4.1 so as to give the distribution of the centers of mass of the protons. The latter then
has an RMS radius of 2.43 fm.



T
ab

le
4

P
ar

am
et

er
s

fo
r

fi
ts

to
6L

i
an

d
7L

i
sc

at
te

ri
ng

d
at

a
I;

')

S
ys

te
m

E
L

ab
N

W
r w

aw
(J

a)
L

1
/ 2

D
11

2
d

'/
2

b
)

-R
e

U
(D

I/
2

)
1m

U
/R

e
U

(D
,/

2
)

oec
)

N
ot

es
R

ef
.

~
A

(M
eV

)
(M

eV
)

(f
m

)
(f

m
)

(m
b)

(h
)

(f
m

)
(f

m
)

(M
eV

)
(f

m
)

"" !; "~
6L

i
S

ca
tt

er
in

g
~ ... l:>

6
L

I+
2

8
Si

13
5.

1
0.

62
43

.5
0.

88
5

1.
13

6
20

14
38

.5
7.

8
1.

60
7

0.
94

2.
02

0.
75

d
)

[1
28

]
;:: ""-

6
L

i+
4 O

C
a

28
0.

62
9.

8
1.

3
0.

87
0

17
00

16
.9

8.
9

1.
69

9
0.

49
1.

66
0.

75
[1

29
]

~
6

L
i+

4 O
C

a
30

0.
60

9.
5

1.
3

0.
61

9
14

26
16

.4
8.

3
1.

58
5

1.
04

0.
75

0.
78

[1
25

]
0

6
L

i+
4 O

C
a

34
0.

60
10

.2
1.

3
0.

84
1

17
92

19
.3

8.
7

1.
66

1
0.

62
1.

57
0.

76
[1

29
]

t"- o '"
6

L
i+

4 O
C

a
50

.6
0.

63
11

.3
1.

3
0.

79
7

19
17

24
.6

8.
5

1.
62

3
0.

84
1.

43
0.

77
[1

26
]

!"

6
L

i+
4 O

C
a

15
6

0.
66

30
.6

1.
10

1
0.

86
0

19
87

44
.2

7.
9

1.
50

8
1.

87
1.

26
0.

80
d

)
[8

6]
">1 0

6
L

i+
44

C
a

30
0.

55
11

.2
1.

3
0.

73
2

16
58

17
.8

8.
7

1.
62

7
0.

61
1.

54
0.

73
[1

25
]

i:
:

S·
6

L
i+

48
C

a
28

0.
65

11
.5

1.
3

0.
85

0
18

95
18

.4
9.

3
1.

70
6

0.
44

1.
80

0.
76

[1
29

]
"" ;:;

6
L

i+
48

C
a

34
0.

60
9.

6
1.

3
0.

83
2

19
15

20
.5

8.
9

1.
63

3
0.

69
1.

41
0.

77
[1

29
]

0 ""
-

6
L

i+
58

N
i

22
.8

0.
37

11
.1

1.
3

0.
84

5
13

33
14

.0
9.

6
1.

68
8

0.
25

3.
04

0.
74

e
)

[3
1]

~ ""
6

L
i+

58
N

i
50

.6
0.

60
11

.9
1.

3
0.

79
1

20
50

26
.6

9.
1

1.
60

0
0.

78
1.

58
0.

76
[1

26
]

0 ""
6

L
i+

9 O
Zr

34
0.

79
11

.8
1.

3
0.

64
9

15
58

19
.7

10
.0

1.
58

8
0.

84
0.

81
0.

74
[1

31
]

;;.
6

L
i+

90
Z

r
73

.7
0.

58
13

.4
1.

3
0.

87
4

26
18

37
.7

10
.1

1.
60

4
0.

54
2.

50
0.

73
[1

32
]

E;
'

0;
;-

6
L

i+
90

Z
r

15
6

0.
63

27
.1

1.
14

3
1.

02
9

29
25

58
.0

9.
9

1.
57

2
0.

77
2.

35
0.

74
f)

[1
30

]
~

6
L

i+
'2

4
Sn

1.
3

0.
62

9
20

74
10

.4
1.

52
9

[1
26

]
0

50
.6

0.
78

12
.3

28
.5

1.
15

0.
83

0.
75

;:;
6

L
i+

20
8 P

b
50

.6
0.

59
11

.8
1.

3
0.

69
5

18
64

27
.3

1l
.8

1.
52

4
0.

77
1.

17
0.

77
[1

26
]

... '"l:> a
7L

i
S

ca
tt

er
in

g
;:;

.
S·

7
L

i+
4 °

C
a

28
1.

08
11

.7
1.

3
0.

66
9

15
97

17
.7

8.
9

1.
66

9
0.

79
0.

74
0.

67
[1

29
]

""...
7

L
i+

4 °
C

a
34

0.
97

17
.2

1.
3

0.
87

1
21

41
22

.5
9.

5
1.

78
1

0.
28

3.
06

0.
64

[1
29

]
l:> ::;.

7
L

i+
48

C
a

28
1.

09
11

.6
1.

3
0.

90
4

20
95

20
.6

9.
7

1.
74

9
0.

38
1.

83
0.

65
[1

29
]

c' ;::

7
L

i+
48

C
a

34
0.

96
12

.2
1.

3
0.

92
8

22
75

23
.7

9.
6

1.
73

1
0.

39
2.

22
0.

66
[1

29
]

'" 'c'
7

L
i+

9 O
Zr

34
0.

97
11

.8
1.

3
0.

65
2

16
38

21
.7

10
.2

1.
59

5
0.

79
0.

78
0.

67
[1

31
]

... ~ '"l:> '"
a)

A
bs

or
pt

io
n,

o
r

re
ac

ti
on

,
cr

os
s

se
ct

io
n.

'i'
b

)
D

'/
2

=
d

,/
,(

A
i/

3
+

A
~
/
3
)
.

c' ;::

c
)

In
ve

rs
e

o
f

th
e

lo
ga

ri
th

m
ic

de
ri

va
ti

ve
of

R
e

U
(R

)
at

R
=

D
,/

2
.

'" "!;
d

)
A

n
ac

ce
pt

ab
le

fit
ca

nn
ot

be
ob

ta
in

ed
w

it
h

r w
=

1.
3

fm
.

""
e

)
A

n
eq

ua
ll

y
go

od
fit

is
ob

ta
m

ed
w

it
h

N
=

0.
60

ex
ce

pt
th

at
th

e
th

eo
re

ti
ca

lc
ro

ss
se

ct
io

n
is

ab
o

u
t

5~
-;

;
hi

gh
n

ea
r

{}
=

25
°.

If
th

e
d

at
a

ar
e

re
no

rm
al

iz
ed

by
1.

05
,

... S·
w

e
fi

nd
th

e
op

ti
m

um
N

=
0.

54
,

w
it

h
W

=
11

.2
M

eV
an

d
aw

=
0.

72
5

fm
.

""
n

T
h

e
m

in
im

um
X2

is
do

ub
le

d
if

w
e

co
ns

tr
ai

n
r w

=
1.

3.

tv tv V
.

T
ab

le
4

P
ar

am
et

er
s

fo
r

fi
ts

to
6L

i
an

d
7L

i
sc

at
te

ri
ng

d
at

a
I;

')

S
ys

te
m

E
L

ab
N

W
r w

aw
(J

a)
L

1
/ 2

D
11

2
d

'/
2

b
)

-R
e

U
(D

I/
2

)
1m

U
/R

e
U

(D
,/

2
)

oec
)

N
ot

es
R

ef
.

~
A

(M
eV

)
(M

eV
)

(f
m

)
(f

m
)

(m
b)

(h
)

(f
m

)
(f

m
)

(M
eV

)
(f

m
)

"" !;
-
-
-
-
-
-
-
-
-
-
~
-

"~
6L

i
S

ca
tt

er
in

g
~ ... l:>

6
L

,+
2

8
Si

13
5.

1
0.

62
43

.5
0.

88
5

1.
13

6
20

14
38

.5
7.

8
1.

60
7

0.
94

2.
02

0.
75

d
)

[1
28

]
;:: ""-

6
L

i+
4 O

C
a

28
0.

62
9.

8
1.

3
0.

87
0

17
00

16
.9

8.
9

1.
69

9
0.

49
1.

66
0.

75
[1

29
]

~
6

L
i+

4 O
C

a
30

0.
60

9.
5

1.
3

0.
61

9
14

26
16

.4
8.

3
1.

58
5

1.
04

0.
75

0.
78

[1
25

]
0

6
L

i+
4 O

C
a

34
0.

60
10

.2
1.

3
0.

84
1

17
92

19
.3

8.
7

1.
66

1
0.

62
1.

57
0.

76
[1

29
]

t"- o '"
6

L
i+

4 O
C

a
50

.6
0.

63
11

.3
1.

3
0.

79
7

19
17

24
.6

8.
5

1.
62

3
0.

84
1.

43
0.

77
[1

26
]

!"

6
L

i+
4 °

C
a

15
6

0.
66

30
.6

1.
10

1
0.

86
0

19
87

44
.2

7.
9

1.
50

8
1.

87
1.

26
0.

80
d

)
[8

6]
'">

1
0

6
L

i+
44

C
a

30
0.

55
11

.2
1.

3
0.

73
2

16
58

17
.8

8.
7

1.
62

7
0.

61
1.

54
0.

73
[1

25
]

i:
:

S·
6

L
i+

48
C

a
28

0.
65

11
.5

1.
3

0.
85

0
18

95
18

.4
9.

3
1.

70
6

0.
44

1.
80

0.
76

[1
29

]
"" ;:;

6
L

i+
48

C
a

34
0.

60
9.

6
1.

3
0.

83
2

19
15

20
.5

8.
9

1.
63

3
0.

69
1.

41
0.

77
[1

29
]

0 ""
-

6
L

i+
58

N
i

22
.8

0.
37

11
.1

1.
3

0.
84

5
13

33
14

.0
9.

6
1.

68
8

0.
25

3.
04

0.
74

e
)

[3
1]

~ ""
6

L
i+

58
N

i
50

.6
0.

60
11

.9
1.

3
0.

79
1

20
50

26
.6

9.
1

1.
60

0
0.

78
1.

58
0.

76
[1

26
]

0 ""
6

L
i+

9 O
Zr

34
0.

79
11

.8
1.

3
0.

64
9

15
58

19
.7

10
.0

1.
58

8
0.

84
0.

81
0.

74
[1

31
]

;;.
6

L
i+

90
Z

r
73

.7
0.

58
13

.4
1.

3
0.

87
4

26
18

37
.7

10
.1

1.
60

4
0.

54
2.

50
0.

73
[1

32
]

E;
'

0;
;-

6
L

i+
90

Z
r

15
6

0.
63

27
.1

1.
14

3
1.

02
9

29
25

58
.0

9.
9

1.
57

2
0.

77
2.

35
0.

74
f)

[1
30

]
~ 0

6
L

i+
'2

4
Sn

50
.6

0.
78

12
.3

1.
3

0.
62

9
20

74
28

.5
10

.4
1.

52
9

1.
15

0.
83

0.
75

[1
26

]
;:;

6
L

i+
20

8 P
b

50
.6

0.
59

11
.8

1.
3

0.
69

5
18

64
27

.3
1l

.8
1.

52
4

0.
77

1.
17

0.
77

[1
26

]
... '"l:> a

7L
i

S
ca

tt
er

in
g

;:;
.

S·
7

L
i+

4 °
C

a
28

1.
08

11
.7

1.
3

0.
66

9
15

97
17

.7
8.

9
1.

66
9

0.
79

0.
74

0.
67

[1
29

]
""...

7
L

i+
4 °

C
a

0.
97

17
.2

1.
3

0.
87

1
21

41
22

.5
9.

5
1.

78
1

0.
28

3.
06

0.
64

[1
29

]
l:>

34
::;.

7
L

i+
48

C
a

28
1.

09
11

.6
1.

3
0.

90
4

20
95

20
.6

9.
7

1.
74

9
0.

38
1.

83
0.

65
[1

29
]

c' ;::

7
L

i+
48

C
a

0.
96

12
.2

1.
3

0.
92

8
22

75
23

.7
9.

6
1.

73
1

0.
39

2.
22

0.
66

[1
29

]
'"

34
'c

'
7

L
i+

9 O
Zr

34
0.

97
11

.8
1.

3
0.

65
2

16
38

21
.7

10
.2

1.
59

5
0.

79
0.

78
0.

67
[1

31
]

... ~ '"l:> '"
a)

A
bs

or
pt

io
n,

o
r

re
ac

ti
on

,
cr

os
s

se
ct

io
n.

'i'
b

)
D

'/
2

=
d

,/
,(

A
i/

3
+

A
~
/
3
)
.

c' ;::

c
)

In
ve

rs
e

o
f

th
e

lo
ga

ri
th

m
ic

de
ri

va
ti

ve
of

R
e

U
(R

)
at

R
=

D
,/

2
.

'" "!;
d

)
A

n
ac

ce
pt

ab
le

fit
ca

nn
ot

be
ob

ta
in

ed
w

it
h

r w
=

1.
3

fm
.

""
e

)
A

n
eq

ua
ll

y
go

od
fit

is
ob

ta
m

ed
w

it
h

N
=

0.
60

ex
ce

pt
th

at
th

e
th

eo
re

ti
ca

lc
ro

ss
se

ct
io

n
is

ab
o

u
t

5~
-;

;
hi

gh
n

ea
r

{}
=

25
°.

If
th

e
d

at
a

ar
e

re
no

rm
al

iz
ed

by
1.

05
,

... S·
w

e
fi

nd
th

e
op

ti
m

um
N

=
0.

54
,

w
it

h
W

=
11

.2
M

eV
an

d
aw

=
0.

72
5

fm
.

""
n

T
h

e
m

in
im

um
X2

is
do

ub
le

d
if

w
e

co
ns

tr
ai

n
r w

=
1.

3.

tv tv V
.



226 G.R. Satchler and WG. Love, Folding model potentials from realistic interactions for heavy-ion scattering

In addition, proton distributions were constructed from shell model wave functions in three
different ways. In each case a configuration (lSI/2 IP3/2) was assumed and the shell model Woods
Saxon potential well was taken to have a surface diffuseness a = 0.65 fm with a spin-orbit coupling
of 17 times the Thomas term. Then the radius of the well was adjusted so that the resulting proton
distribution had an RMS radius of 2.43 fm. We assumed that the neutron distribution was the same
as for the protons.

First, the protons were assumed bound by their observed separation energies S(sld = 22.7 MeV,
S(P3/2) = 4.6 MeV, and no account was taken of the center of mass recoil; this required,o = 1.40 fm.
This prescription gives an incorrect tail to the distribution [62], so in the next attempt the center
of mass recoil was corrected for by unfolding recoil motion with a mean square radius of 0.6 fm 2.
We then needed a well with '0 = 1.59 fm in order to get the required RMS radius. Finally, a third
prescription used was to include the recoil effects by taking the binding energies to be (6/5)2 times
the separation energies; this gives the correct form for the tail of the distribution [62], although
it is not quite "correct" in the nuclear interior. This prescription needed a well with,0 = 1.65 fm.

It turns out that these various approaches give very similar density distributions. The resulting
folded potentials are even more similar, providing further evidence that the mean square radius
of the density is the critical quantity. Near the strong absorption radii, the various prescriptions
give potentials which differ by 3%or less.

One uncertainty is whether the neutron distribution differs from the proton one. The importance
of this was tested in one way, by assuming that the neutron shell model potential had the same
shape as the proton one but with its depth adjusted to give neutron binding energies about 1 MeV
larger than those for the protons. This gives a neutron RMS radius about 0.04 fm smaller than the
proton one and a folded potential which is a few per cent weaker at the strong absorption radius.

One of the density distributions just described was based upon the charge distribution obtained
from electron scattering. Further, the folded potentials obtained are determined primarily by
the mean square radius of the 6Li distribution rather than its detailed shape, provided the latter is
"reasonable". Hence other structure models for 6Li, such as an 0( + d cluster, can be expected to
give similar results. Consequently, it does not seem likely that such a large "anomaly" in the folded
potentials for 6Li could be due to an unwise choice of density distribution for that nucleus.

7.1.2. The 7Li nucleus
The shell model was used for both neutrons and protons since there was no reason to assume

here that Po = (N/Z)pp. Configurations of (lSl/~ IP3/2) (protons) and (lSl/~ IP3/~) (neutrons) were
assumed. The IP3/2 binding energies were taken as (7/6f times the averages of the separation
energies which leave 6Li or 6He, respectively, in their ground and first excited states [62]:
S(lP3/2) = 8.35 MeV (neutron), 10.9 MeV (proton). The ISl/2 nucleons were bound by 25 MeV
(neutron) or 23 MeV (proton). The potential well radius was then adjusted to give an RMS radius
of 2.28 fm for the protons, corresponding to a charge radius of 2.41 fm [59]. This required,o = 1.475
fm and the same value was used for the neutrons. Then the RMS radius for the neutrons was
2.44 fm, or 0.16 fm larger than for the protons.

Again, very similar results were obtained by binding the nucleons by their separation energies
and unfolding the center of mass recoil explicitly. For example, this prescription gives a folded
potential for 7Li + 40Ca which is about 10 %deeper at the strong absorption radius.

It is possible that our approach has overestimated the difference in the neutron and proton
RMS radii and that the neutron-proton correlations actually reduce this difference. If that is the
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case, we will also have overestimated somewhat the folded potentials near the strong absorption
radii for 7Li scattering so that the correct N values for 7Li should be larger than those shown in
table 4.

7.2. Results for 6Li scattering

Table 4 gives the optimum parameters for fits to 6Li scattering data. (The results reported there
were obtained using the first of the shell model prescriptions for 6Li described in section 7.2.1.)
We kept the imaginary radius parameter rw = 1.3 fm except for those few cases, all for high energy,
where the data demanded a smaller value. In every case a significant improvement was obtained
by allowing the value of aw to be greater than 0.6 fm.

The values of N are appreciably less than unity. The optimum value of N for 58Ni at 22.8 MeV
is low, but a 5%increase in absolute normalization of these data raises it to N = 0.54. The values
for 124Sn and for 90Zr at 34 MeV are somewhat high (the latter case being somewhat out of line
compared with the results for 90Zr at the higher energies), but the remaining values cluster around
N ~ 0.62. We can conclude that the double-folding model, with the M3Y interaction which is
found to be satisfactory for many other heavy ion systems (table 3), overestimates the potential
for 6Li scattering by about 60 %.

We have already remarked that values of aw greater than 0.6 fm are needed for 6Li; this is to be
contrasted with the imaginary potentials for heavier ions (table 3) where either aw = 0.6 fm is
adequate or else smaller values are required. The behaviour of the 6Li potentials is reminiscent of
those for deuteron scattering and we may surmise that it is for the same reasons, weak binding
and ease of break-up. We may also note from table 4 that the slopes of the real folded potentials
(represented by a) at the strong absorption radii are less for 6Li (a between 0.7 and 0.8 fm) than for
the heavier ions (a between 0.6 and 0.7 fm). This is also associated with the weaker binding of 6Li.

7.3. The case of 6Li + 40Ca

Most of the 6Li scattering considered here is sensitive only to the potential in the vicinity of the
strong absorption radius. An important exception is for the target 40Ca at 30 MeV. These data
[125] extend back to about 175 0 (see fig. 19) and show "anomalous large-angle scattering" which is
analogous to, although not as marked as, that discussed earlier for a + 40Ca and 160 + 28Si.
In particular, the cross sections at large angles are more than an order of magnitude larger than
those for 6Li + 44Ca at the same energy. As fig. 19 shows, the folded potential is able to give a
good fit to these data. It also fits those for 44Ca. The main difference is that the absorptive potential
is weaker for 40Ca (both Wand aware smaller than for 44Ca).

The same characteristic was observed for the other "anomalous large-angle scattering" cases
and implies [26, 71] some degree of penetration into the interior, R ~ D 1/2• It is this aspect which
is of especial interest in the present context. The scattering of 6Li + 40Ca at 30 MeV is found
to be sensitive to the real potential into R ~ 3 fm, corresponding to considerable overlap of the
densities of the two ions. Yet the data can be fitted by a simple renormalization of this potential by
a radially-independent factor N ~ 0.6.

The scattering of 6Li + 40Ca at 156 MeV, also shown in fig. 19, still requires N ~ 0.6 but is
less sensitive to the interior of the potential. (Figure 19 also shows that in this case it is not satis
factory to use an imaginary potential with the same shape as the real, folded, one; i.e. it is not
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sufficient to use a complex N.) The data for the energies close to 30 MeV, namely 28 and 34 MeV,
are a little puzzling. Both indicate N ~ 0.6 for the real potential but seem to demand a larger
imaginary diffuseness parameter aw than at 30 MeV.

7.4. Discussion

We have presented evidence that 6Li behaves differently from the other ions we have considered,
even from 7L~ in that the double-folding model with the M3Y interaction gives potentials which
are almost a factor of two too strong. The nucleus 6Li certainly differs from the other projectiles
in two conspicuous respects: (i) it has a spin of 1, and (ii) it is more weakly bound. Other calculations
[31, 93, 126] have indicated that a reasonable strength of spin-orbit coupling has rather small
effects on the differential cross sections. We verified that this was so even for the backward angles
for 40Ca at 30 MeV. Hence we believe that neglecting the spin-orbit potential is not responsible
for the discrepancy. Further, the spin-spin part VlO of the central interaction (6) cannot contribute
to the folded potential for a spin-zero target (appendix A).
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A more likely explanation would seem to be the polarization and break-up of the 6Li in the field
of the target nucleus [127] which could make important contributions to the ~U term of eq. (3).
However, there is no clear evidence from table 4 that the deviation of N from unity increases as the
target mass increases, which suggests at least that it is not the Coulomb interaction which is res
ponsible. Further, there is no indication that the renormalization needed varies with the bombard
ing energy. At first sight, the sign of the effect is a little puzzling. A perturbative treatment results
in the real part of the polarization potential being attractive in both the adiabatic and the sudden
limits [24] whereas the observed effect is repulsive. The 6Li behaves as though it were smaller than
is indicated by electron scattering measurements [124].

7.5. The 9Be nucleus

Since this review was originally prepared, the scattering of 9Be from a number of targets has
been studied [133]. Here we report briefly on the results since 9Be appears to offer an "anomaly"
similar to that found for 6Li.
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meter fit in which the imaginary potential was taken to have the same shape as the folded real potential.
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7.5.1. Density distribution for 9Be
A crucial ingredient in the calculation of the folded potential is the one-body density distribution

for 9Be. Electron scattering [134J gives a precise value for the charge rms radius (2.519 ± 0.012 fm)
which places a very important constraint on the proton distribution. However, there is no inde
pendent information on the neutron distribution and this is important because of the very weak
binding (1.67 MeV) of the odd neutron. We approached this problem in several ways, each being
a variation of the independent-particle model and an extension of what was done for 6Li.

A density distribution can be constructed in principle from the same radial overlap factors that
appear in treatments of nucleon pick-up reactions [62]. However, the construction of these overlap
factors in general is not simple [135]. We adopted the widely used prescription that their radial
shapes could be represented by the wave function of a nucleon in a Woods-Saxon potential with
fixed radius R and diffuseness a but whose depth is adjusted to give the appropriate binding energy.
Their normalization was given by the corresponding spectroscopic factors [62]. The simplest
configurations were adopted: lsi/2 lp~/2 for the protons, lsi/2 lp~/2 for the neutrons. The lSI/2
orbital was assumed to be bound by 26.5 MeV. The p-shell wave functions of Cohen and Kurath
[136J indicate that the parentage for lp proton pick-up from 9Be is primarily the ground state of
8Li with a few fragments at excitation energies up to a few MeV. We represented this by the full
strength at the centroid energy, corresponding to an average separation energy of 18 MeV. The
parentage for lp neutron pick-up is predicted [136J to be distributed over a wide range of excita
tions in 8Be, but falls roughly into three groups corresponding to separation energy centroids of
1.67 MeV, 5.1 MeV and 17.9 MeV with strengths of 0.58, 0.72 and 1.7 neutrons, respectively.
Consequently, we used lP3/2 orbitals with these energies and occupancies to construct the neutron
density distribution.

As before, the correction due to center-of-mass recoil was handled in two ways. Method A
used the harmonic oscillator approximation with the parameter b = 1.60 fm, corresponding to
a correction of - 0.427 fm2 to the mean square radius of the density distribution. Method Bused
effective binding energies (Aj(A - 1»2 times the separation energies; this assures [62] the correct
form for the tails of the form factors.

The shell-model potential well was chosen with R = ro x 81
/
3 fm and a = 0.65 fm and a spin

orbit coupling of 17 times the Thomas term. The Coulomb field from a uniform charge of radius
2.7 fm was included for the protons. The value of ro was adjusted until the proton distribution had
an rms radius of rp = 2.39 fm, corresponding to the charge radius of 2.519 fm. In method A this
led to r 0 = 1.525 fm, while method B required r 0 = 1.595 fm. The same potential wells were then
used to generate the neutron distributions, except for adjustment of the depth to give the required
binding. In this way, method A gave a neutron rms radius rn = 2.78 fm so rn - rp = 0.395 fm,
while method B gave rn = 2.77 or rn - rp = 0.38 fm. The corresponding folded potentials for
9Be + 40Ca near the strong absorption radius are given in table 5. Method B gives a slightly
stronger potential but with a slightly steeper slope (smaller value of oc).

Variations on these prescriptions were tried to study the sensitivity of the results. First, if all
the Ip neutrons were assumed to be bound by the separation energy (1.67 MeV) of the odd neutron
(cases Nand B' in table 5), rn - rp increases to over 1.1 fm and the folded potential doubles in
strength at r = 9 fm and has a much less steep slope (oc = 1 fm). On the other hand, removing
the Ip occupancy at 1.67 MeV so that we just have 0.89 neutrons bound by 5.1 MeV and 2.11 bound
by 17.9 MeV (case A" in table 5) reduces the folded potential by less than 20 %.

We also know that the "well-depth prescription" for the neutron form factors is not strictly
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Table 5
Various models of 9Be and the 9Be + 40Ca potential

Methoda) <r2>~/2 <r2>~/2 _ <r2>~/2 -Re U(r = 9) lX(r = 9)b)
(fm) (fm) (MeV) (fm)

A 2.78 0.395 1.11 0.76
B 2.77 0.38 1.14 0.74
A' 3.62 1.19 2.27 1.005
B' 3.52 1.13 2.27 0.97
A" 2.64 0.21 0.90 0.68
B" 2.60 0.20 0.96 0.70

a) See text.
b) Inverse of the logarithmic derivative of Re U at r = 9 fm.

correct [135]. To gain some idea of the error associated with this, we adopted what may be the
opposite extreme (case B" in table 5) of fixing the neutron well depth at 60 MeV, the value required
in method B for the most tightly bound Ip component, and reduced ro to give the correct binding
for the two more weakly bound components; values of ro = 1.1 and 1.0 fm were required. This
procedure tends to reduce the radial extent of these two components. Indeed, rn - rp is reduced
to 0.2 fm, but the folded potential at r = 9 fm is reduced only 15 %; it also becomes steeper
(IX = 0.70 fm). The folded potentials for targets other than 40Ca behave in a way very similar to
those for 40Ca given in table 5.

7.5.2. Analysis of 9Be scattering
The data available for 9Be are somewhat limited. We considered measurements between 12 and

30 MeV on 28Si, 40Ca and 58Ni [137] and 121 and 201 MeV on 28Si [138]. There are also some
data at 50 MeV on 28Si, 40Ca and 208Pb [139], although their usefulness is reduced because the
absolute normalization is uncertain to within about ± 15 %and the energy is uncertain to about
±l MeV.

The value rw = 1.3 fm was found satisfactory except for the highest energies on 28Si; these data
demanded smaller values. The data for the various energies from Zurich [137] for each target
were combined and fitted simultaneously. The optimum parameters are given in table 6 for poten
tials constructed according to method B; some of the fits have been shown elsewhere [133].
In every case a renormalization of N "- 0.5 is required. The real potentials for 9Be at the strong
absorption radii R = D I/2 are generally even weaker than found for 6Li (table 4) and the imaginary
potential in this region appears to be relatively stronger. We also note that the imaginary potential
diffuseness required, aw ~ 0.8 fm, is similar to that found for 6Li but appreciably larger than that
required for other projectiles. In both cases this is presumably related to the weaker binding energy
of these nuclei which also results in the slope of the tail of the real potential being smaller (or IX

being larger) than for other nuclei.
These analyses provide strong evidence that the potential for 9Be scattering is anomalous in

the same sense as for 6Li. The model which accounts for the scattering of other projectiles predicts
a potential which is about two times stronger than the empirical one, at least in the region near the
strong absorption radius to which the scattering is sensitive. There is no clear evidence from the
present results that this renormalization is dependent upon energy or target, although more exten
sive data will be required at the higher energies and for the heavier targets in order to be certain
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of this. Although, as table 5 indicates, there is some uncertainty in the value of N due to the uncer
tainty in the neutron distribution in 9Be, this effect is much too small to account for N ~ 0.5.
Two other effects omitted from the present analysis are those due to spin-orbit coupling and to
scattering by the quadrupole moment of 9Be. Studies of the former with 6Li indicated that it is
negligible. The quadrupole scattering amplitude is incoherent with the main monopole amplitude
and hence its effects are likely to be small, although it could be noticeable at larger angles, especially
if the angular distribution had any oscillatory structure [92]. (We note that 6Li differs from 9Be
in having a very small quadrupole moment.)

One feature that 6Li and 9Be share and which may be significant is that removal of a single
nucleon leaves an unbound nucleus. The resulting continuum of 3-body states may play an impor
tant role in determining the higher-order corrections to the real folded potential.

8. Inelastic scattering

8.1. Introduction

The folding model may also be used to produce transition potentials Utr(R) for inelastic scatter
ing [33, 140]. If only one of the nuclei is excited, the corresponding transition density Ptr(r) is
inserted in the folding integral (5) in place of the ground-state density for that nucleus (see appen
dix B). The transition density may be obtained microscopically, such as from shell model or RPA
particle-hole calculations [140J, or macroscopically by deforming the ground-state density dis
tribution [33, 35, 72]. Here we use the latter prescription. Just as for the elastic potential, particular
care must be taken to include the transition density out to sufficiently large distances if the folding
integration is to be done accurately. This is of concern especially if microscopic densities are to be
used; structure calculations of this kind often do not use radial wavefunctions which are accurate
at large distances (for example, they may use an oscillator basis which is quite adequate over the
bulk of the nucleus but which is not extensive enough to give the tails of the wavefunctions accu
rately).

If the multipolarity of the transition is L, the folding integration then selects [33, 141J the
2L-pole component of the effective interaction v(r12) from the multipole expansion

(31)

Only the term with L = 0 contributes to the elastic scattering of spherical nucle~ so by studying
inelastic transitions with L > 0, we can probe the effective interaction v in more detail. In parti
cular, it has long been known that the relative cross sections for different multipoles depend sensi
tively upon the range of the interaction [46, 140, 141]. (Quadrupole, L = 2, contributions to the
predominantly L = 0 elastic scattering from non-spherical nuclei have been considered previously
[92J using the M3Y interaction.)

Two difficulties arise in applying these ideas. The first is that for low L-values, the sensitivity
of the scattering to the range of the nuclear interaction is often reduced because of the dominance
of the Coulomb excitation contributions (see [140J for example).

The second difficulty is due to uncertainties over the imaginary part of the effective interaction.
We avoided this difficulty for elastic scattering by using a phenomenological Woods-Saxon
imaginary potential. We could extend this hybrid approach to inelastic scattering by using folding
for Re Utr(R) and the usual collective model approach for 1m Ut.(R) of deforming the Woods-
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Saxon imaginary potential obtained from a fit to the corresponding elastic scattering data. In
this approach, 1m Vtr(R) for a given L and to first order in the deformation is proportional to

(N) d [ ] _ (N) (WRw) eXfh Rw dr 1m V(R) - Ih ----;;; (eX + If ' (32)

where 1m V and x are defined by eq. (26). Thus, its shape is independent of L. We then have to
adopt some prescription for the value of the deformation parameter prj. Further, it is not clear
that the correct shape is given by eq. (32) with parameters Rw and aw taken from elastic scattering.
It is well known [33, 44, 141-143] that the result of the corresponding prescription for Re Vtr(R)
may be quite different in shape from the (L-dependent) shapes obtained in the folding model.
(We discuss further examples below in which the deformation and folding models give very
different overall shapes for Re Vtr' However, in these cases, the two prescriptions do give almost
the same magnitudes and similar slopes for Re V tr in the vicinity of the strong absorption radius
provided the corresponding optical potentials give the same elastic scattering and the appropriate
deformation parameters are used.)

These difficulties are avoided formally by assuming the imaginary interaction to have the same
shape as the real one. This corresponds to using a complex N factor for elastic scattering. When
this is adequate for fitting elastic data, the same complex N may be used in a consistent analysis
of the inelastic scattering without introducing further parameters. Unfortunately, the physics of
this procedure is questionable. At the very least, we expect [5, 144] the imaginary part of the
effective interaction to be strongly density dependent. The procedure may be acceptable if both
elastic and inelastic scattering are only sensitive to the potential near the strong absorption radius
and if the real and imaginary parts of the effective interaction have similar ranges.

Uncertainties in the imaginary interaction for inelastic scattering are of particular importance
when there is significant interference between the amplitude due to the nuclear interaction and
that due to Coulomb excitation. This interference is sensitive to the relative phase of the two ampli
tudes [145]. (Examples of differences in the results of using the two prescriptions for 1m V tr just
discuss~d are shown in [140].)

Despite these various uncertainties, good fits to data for the inelastic scattering of heavy ions
have been obtained in analyses which use the folding model for both the elastic and inelastic
scattering in a consistent way. Most of these have used a semi-phenomenological effective inter
action of Gaussian form with a "reasonable" range (for example, ranges of 1 fm [44, 140] or 1.4 fm
[33, 143]). The range of the M3Y interaction used here is predetermined and not adjustable. It
has been applied to a few cases of heavy ion inelastic scattering which we now discuss.

8.2. Applications

8.2.1. Procedure
The transition potential Vtr(R) constructed using the folding model may, of course, be used in

coupled-channel calculations. This was not done for the cases considered here; instead the dis
torted-wave approximation (DWA) [46, 146] was used. One reason is that a coupled-channel
approach would have required reanalysis of the elastic data for consistency and this is time
consuming and costly. Consequently, we might expect only qualitative agreement with the data
(see [147] for example). Certainly the DWA is not adequate for excitation of the 4+ state in 28Si
or for the mutual excitation of two 12C ions, both of which receive strong two-step contributions.
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Only quadrupole L = 2 excitations are considered here and in each case the form of the Tassie
model [148] was used for the transition densities (appendix B),

C df(r)
Ptr(r) = j5 r~, (33)

In the strict hydrodynamical model, the radius c and diffuseness d would be the same as those for
the 2-parameter Fermi shape which describes the ground state density distribution. In practical
analyses of inelastic electron scattering data, this constraint is often relaxed. When possible, we
should use the parameters obtained from electron scattering, with correction for the finite size of
the proton (and neutron) charge distribution. For the predominantly isoscalar transitions consider
ed here, we assume that the contributions from the neutron and proton excitations have the same
shape with magnitudes in the ratio N/z. The constant C was chosen so that the proton part of
Ptr(r) would yield the measured B(E2) value, where [149]

B(E2)j = 5IfPtr(r)r4drI2 e2 ~ [(~C)(C5 + ~O n2d2c3 +~n4d4c + l20d5 exp( -J))Je2
.

(34)

As just discussed, the imaginary part of Utr(R) was either chosen to have the same shape as the
folded, real part (with a complex N obtained from the elastic data) or by deforming the Woods
Saxon imaginary potential obtained from the elastic fit according to eq. (32). For the latter ap
proach, the nuclear potential deformation parameter f3~N) was determined from the relation

f3~N)Rw = f3~)Re • (35)

Here f3~) is the charge deformation parameter extracted in the usual way from the measured
B(E2) using a uniform charge radius of Re = 1.2A1/3 fm.

The contribution from Coulomb excitation was included in the usual way, again using the
measured B(E2) value. Consequently, once the B(E2) is known, this procedure for constructing
the transition potential has no free parameters and allows us to make an absolute comparison
of the predictions of the M3Y interaction with inelastic data. The optical potentials used in the
DWA were the corresponding ones which fit the elastic data.

8.2.2. Excitation of 6°Ni by 16 0
The excitation of the 1.33-MeV 2+ state by electrons [150] led to B(E2) = (918 ± 26)e2 fm4

,

corresponding to f3~) = 0.205 ± 0.003. Analysis of the electron measurements also gave c = 4.25 fm,
d = 0.518 fm for the transition charge density. To account for the finite size of the proton charge,
we simply reduced the diffuseness to d = 0.47 fm; this reduces the transition radius by the required
amount [151]. Then we need C = 0.0326 fm- 3.

The radial parts of the transition density and potential for 160 + 6°Ni are shown in fig. 20,
together with the real part of the transition potential obtained by deforming a Woods-Saxon
potential which fits the elastic data [35]. (The latter was normalized using eq. (34) with the real
potential radius instead of Rw.) Although the folded and deformed potentials are very different
for R ;S 8 fm, they are almost the same in both magnitude and slope in the vicinity of the strong
absorption radius (R"'" 9-10 fm). The corresponding inelastic cross sections were compared in
[35J with the measurements taken at 142 MeV; fig. 21 shows a comparison with 61-MeV data.
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Fig. 20. Transition potentials and densities for inelastic excitation of the lowest 2+ states of 28Si and 6°Ni. The radial part of the transi
tion potential is denoted !iV. The curves with long dashes were obtained by deforming to first order Woods-Saxon (WS) potentials
which fitted the corresponding elastic scattering data [35].
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Fig. 21. Comparison with the data of the inelastic scattering for 160 + 60Ni at 61 MeV predicted by the folding model.
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In both cases the agreement is good in both magnitude and shape, except for some deviations at
the small angles where interference between nuclear and Coulomb excitation is important. These
deviations may be due to higher-order effects not included in the DWBA or to the imaginary part
of the transition potential being incorrect. (In this case, the results of using either a complex
folded potential or a Woods-Saxon imaginary part are indistinguishable [35] at 61 MeV and only
differ by a few per cent at 142 MeV, even in the interference region.)

8.2.3. Excitation of 28Si by 160
There is some uncertainty in the B(E2) value for the excitation ofthe 2+ state at 1.77 MeV in 28Si.

We adopted the average value [152] of B(E2) = 327 e2 fm4, corresponding to fJ~) = 0.41. We also
chose transition density parameters c = 3.2 fin and d = 0.5 fm so that C = 0.0556 fm - 3. These
are representative of the c and d parameters needed to describe the ground-state density distribu
tion, and we have found that the predicted inelastic scattering is not very sensitive to small varia
tions in these parameters provided the same B(E2) value is reproduced. (More recent measure
ments [153] have led to B(E2) = 337 ± 30 e2 fm4

, with c = 2.68 fin and d = 0.536 fm for the
transition charge density.) The potential and density for 160 + 28Si are also shown in fig. 20,
together with the real part of a deformed Woods-Saxon potential which fits the elastic data [35]
and normalized using eq. (34) with the real potential radius instead of Rw. Again the folded and
deformed transition potentials are very different in the interior but similar in the surface. It was
shown in [35] that these potentials resulted in reasonable fits to inelastic data at 141.5 MeV.
Figure 22 shows a similar comparison for scattering at 37.7 MeV. In this case the "global" folded
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potential of [94] and the "global" Woods-Saxon form of [115] were used. The folded model
agrees less well with the data, although the agreement is quite good considering that these are
absolute predictions. If we adjust the folded optical potential renormalization factor N (to N ~ 1.0)
and the parameters of the associated imaginary Woods-Saxon potential to optimize the fit to the
particular elastic data at 37.7 MeV, much better agreement with the inelastic scattering is obtained.
The discrepancies seen in fig. 22 are due to inadequacies of the potentials used for the elastic
channels, rather than the M3Y interaction itself.

8.2.4. Single excitation of 12c + 12C
Differential cross sections for the excitation of one nucleus to its 2+ state at 4.44 MeV in the

scattering of 12C + 12C were measured for 14 energies between 70 and 127 MeV [72]. The transi
tion charge density for this excitation has not been well-determined experimentally. We chose
to use B(E2) = 42 e2 fm4 [154]. (More recent measurements [155] give 39 ± 4 e2 fm4

.) In the
choice of c and d, we were guided by analyses of electron scattering data [156]; the transition
density obtained in that way is quite well reproduced by using c = 1.5 fm, d =' 0.65 fm in eq. (33)
with C = 0.171 fm - 3. In order to test the sensitivity of the scattering to the details of the density,
we also made calculations with c = 2.5 fm, d = 0.50 fm (C = 0.099 fm - 3) and with c = 1.5 fm,
d = 0.50 fm (C = 0.456 fm - 3). Figure 23 shows these densities and the corresponding folded
transition potentials. Although the densities are very different, the potentials are quite similar,
especially near R ~ 6 fm which is just inside the strong absorption radius for 12C + 12C scattering
(table 3). In particular, the full and dashed curves are very close and indeed we find that they yield
almost identical inelastic cross sections.

The B(E2) value we use corresponds to f3~c) = 0.60 and this was used, with eq. (34), to deform
the Woods-Saxon imaginary potential (table 3). Including this imaginary part of the transition
potential increases the predicted inelastic cross sections by 30 to 40 % in magnitude, with some
small changes in the angular distributions, and improves the agreement with the data. Coulomb
excitation was found to change the cross sections by at most a few per cent.

Comparisons with the data at a representative set of energies are shown in fig. 24 for the para
meters c = 1.5 fm, d = 0.65 fm. The agreement in magnitude is very good and the predicted shapes
are also very satisfactory considering that (i) no adjustable parameters were available, and (ii) the
DWA was used. Further, some of the details of the angular distributions are quite sensitive to small
changes in the parameters Gust as is the case with the elastic scattering). For example, the angular
distribution at the lowest energy of 70.7 MeV oscillates somewhat out of phase with the data but
a 5%increase in the real potential (from N = 1.01 to N = 1.06) changes this drastically (fig. 24).
This result is due to the changes produced in the elastic distorted waves, rather than in the transi
tion potential.

There are small fluctuations in the optimum values of W at the various energies [72] so the
sensitivity of the inelastic scattering to these was studied. The general characteristic of increasing
W is to reduce the cross section at the larger angles as indicated by the dotted curve in fig. 24 for
93.8 MeV.

8.3. Discussion

In summary, a remarkably good parameter-free account of inelastic scattering is obtained if we
use the M3Y interaction folded with a transition density suggested by electron scattering measure-
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ments and, especially, normalized to give the corresponding observed B(E2) value. We further
assumed that the neutron transition density was (N/Z) times the proton one and included an
imaginary transition potential obtained by deforming (according to eqs. (32) and (34)) the Woods
Saxon imaginary potential required to fit the elastic data. The small discrepancies remaining could
well be due to inadequacies in the imaginary potential and in the use of the DWA.

Hence we conclude tentatively that the M3Y interaction can be used successfully to describe
inelastic as well as elastic heavy ion scattering. More detailed conclusions must await studies of
other nucle~ as well as examination of coupled-channel effects and a better understanding of the
imaginary potential.
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channels. The dotted curve at 93.8 MeV shows the effect of increasing the absorptive strength by 1O~/o.
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9. Summary and discussion

Although phenomenological optical potentials are often used to describe the elastic scattering
of heavy ions, the use of calculated potentials is appealing because such potentials require as input
information either from other nuclear processes such as nucleon-nucleon and electron-nucleus
scattering or from nuclear models which may thereby be checked. Further such calculations allow
one to predict the potentials for systems for which elastic scattering data are not available. We
have taken a step in this direction for the real part of the optical potential by using the double
folding model approximation.

We have chosen to use the definition (3) of the optical potential for heavy-ion scattering which is
given by Feshbach's projection operator formalism. This governs the Xoo(R) term of the expansion
(2) of the total wavefunction, which describes the relative motion of the two nuclei while they both
remain in their ground states. This potential consists of a rea~ folded term UF plus a complex
remainder ~U. We have studied the validity of using UF alone for the real part of the optical
potential by comparison with experimental scattering data. This implies that Re ~U ~ UF and
can be neglected, at least in the region to which the scattering is sensitive. A phenomenological,
Woods-Saxon form was used to represent 1m ~U. Effective nucleon-nucleon interactions based
upon realistic G-matrices were used to construct the folded potential UF' In principle, the formula
for UF should take complete account of the exchange of nucleons between the two nuclei due
to antisymmetrization. We have chosen to include only the "knock-on" single nucleon exchange
(SNE); that is, as implied by eq. (14), the exchange of the two interacting nucleons. This was done
on the grounds that all the other exchange terms require the interchange between projectile and
target of one or more pairs of nucleons without the presence of an interaction between them.
While these can occur, the overlaps involved in the folding integral tend to be smaller, especially
for the important peripheral collisions [54]. Further, the SNE term retained was treated approxi
mately by use of the pseudopotential (15).

In an earlier review [37] it had been concluded that double-folding overestimated the real
potential; however, it is now known [48] that this was due to an improper choice for the represen
tation of the effective nucleon-nucleon interaction, especially of its range. In particular, the long
range OPEP component was sometimes treated incorrectly. The present work shows that the
double-folding model with a properly chosen effective interaction, in particular the M3Y inter
action [II], can reproduce the scattering of many systems with bombarding energies in the range
of 5 to 20 MeV per nucleon. The real potentials for these systems are gi"eIl correctly if the calculated
folded potentials are renormalized by a factor N where N ~ 1.11 ± 0.13 (see table 3). The deviation
of + 11 %of the average N from unity might be due to an underestimate of the SNE when using
the zero-range approximation (15), or it may reflect some other small deficiency such as the neglect
of Re ~U or the other exchange terms. Very similar results are given by the density-dependent
DDD interaction [50]. Preliminary applications to inelastic scattering appear to be equally
successful. The same interactions are also successful in describing the few cases of alpha scattering
studied so far. They are moderately successful when applied to nucleon scattering, although they
appear to predict real potentials with mean square radii which are slightly too small; this may
also be due in part, at least, to the use of the zero-range approximation to SNE. Although the
density-dependent DDD interaction gives very similar results for nucleons as well, it is also possible
that other forms of density-dependence may explain the discrepancies [82].

The only exception established so far occurs for the scattering of 6Li and 9Be which require a
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reduction in the strength of the calculated folded potential by a factor of about two. The reason
for this is not known at present, but presumably it is associated with the weak binding of these two
nuclei. Preliminary results of analyses of the scattering of other non-closed-shell nuclei, such as
13C, 14,15N and 17,180, indicate that these are not "anomalous" and that folded potentials with
N ~ 1 can give agreement with the data [162].

The magnitude of the SNE terms depends upon the choice for the odd-state effective interactions.
However, these terms are important because, although the SNE contribution from the even-state
interactions is small ( '" 10 %), the exchange contribution from the non-OPEP part of the odd-state
forces almost exactly cancels the direct contribution (see table 2). Consequently, the inclusion of
SNE greatly reduces the sensitivity ofthe results to the choice of the poorly-known odd-state forces.

Most of the scattering data we have examined is sensitive only to the potential at large separa
tions, perhaps a favorable circumstance for the folding model to be successful. However, there are
a few cases, associated with absorption which is weaker than usual, where the scattering is sensitive
to the interior of the potential. The model was found to be successful for some of these, namely
(X + IX, (X + 40Ca and 12C + 12c. This implies that the very deep potentials predicted by our model
are indeed appropriate, although it is possible [27J, at least for 12C + 12C, that discrete ambiguities
exist that would allow potentials to be used that are somewhat more shallow in the interior provid
ed their values in the surface were unchanged. (For 12C + 12C, for example, "surface" here means
R ;<: 4 fm [72].) However, it does seem very unlikely that this could be so for the (X + (X scattering.
It would indeed be a cruel jest of nature if the good agreement obtained with the M3Y interaction
in these cases should eventually be shown to be mere accident!

Preliminary studies suggest that the folding model may also be able to reproduce the "ano
malous" large-angle scattering observed [100, 105J for other systems such as 160 + 28Si, 12C +40Ca
and 160 +40Ca. Even 6Li +40Ca at 30 MeV is fitted (see fig. 19) with a simple radially-independent
renormalization of N ~ 0.6, although this scattering is affected by the potential for separations
as small as R ~ 3 fm.

When the validity ofthe folding model with a given interaction has been established, it may then
be used to obtain information from heavy-ion scattering on the matter distributions in nuclei.
In particular, it may provide further evidence on differences between neutron and proton distri
butions, as was indicated for example by the discussion above on 12C + 142Nd. (Of course, this
approach has been used for some time in the analysis of elastic alpha scattering; see [3, 86J for
example.) The estimate presented in appendix B implies that a change of 0.1 fm in the neutron
RMS radius in a typical case would result in a change in the folded potential of order 20 %; this
is in agreement with the results for 12C + 142Nd.

The success of the folding model used here, if not accidental, implies that the term Re d U in
eq. (3) is small compared to UF(R) in the region of R that is important. The results of Vinh Mau
[23J for (X + 40Ca suggest that indeed this is the case. The work of Love et al. [24J indicates that
Vinh Mau's result was obtained because of her assumption that the important inelastic transitions
are to states with excitation energies much smaller than the bombarding energy. This implies
that the associated momentum transfers q are predominantly much smaller than the momentum k
of relative motion; then the factor [1 + i(nk/q)J in eq. (20) of Love et al. [24J leads to
Re dU ~ 1m dUo The work of [24J was concerned with the contributions to dU from Coulomb
excitation for which the assumption q ~ k is a good one. That this assumption might be reasonable
even for the short-ranged nuclear interactions is suggested by the representation of the matrix
elements in momentum space given in appendix B; for example, eqs. (B.3) and (B.9). Although
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that the associated momentum transfers q are predominantly much smaller than the momentum k
of relative motion; then the factor [1 + i(nk/q)J in eq. (20) of Love et al. [24J leads to
Re dU ~ 1m dUo The work of [24J was concerned with the contributions to dU from Coulomb
excitation for which the assumption q ~ k is a good one. That this assumption might be reasonable
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the interaction v has a short range and hence vcontains high momentum components, it is always
associated with the density P of the ion responsible for the excitation. The relatively large size of P
tends to prevent the high momentum components of v from contributing. In other words, the inter
action responsible for the excitation of one nucleus is not v itself but v folded into P for the other
nucleus; this is a relatively long-ranged object typical of a nucleon-nucleus optical potential.
However, we must await explicit calculations to see whether this argument is sufficient to make
Re ~U negligible.

For the future, it will be valuable to give more attention to cases like those exhibiting "ano
malous" large-angle scattering because these may reveal more about the potential at smaller dis
tances. It is important to confirm whether the folding model remains valid here or, if not, how it has
to be modified. This should include studies of excitation functions as well as angular distributions
and may involve the introduction ofmodified imaginary potentials (such as the use of L-dependence
or surface transparency).

A more sophisticated interaction should also be used. The energy-dependence [5, 6] should be
introduced explicitly along with the density-dependence. Further, it is desirable to have a G-matrix
which is more appropriate to heavy-ion scattering, in which the two interacting nucleons are
immersed in two pieces of nuclear matter which are moving with respect to each other [144],
especially when the energy per nucleon becomes comparable to the Fermi energy. For considerably
higher energies (;;;:: 100 MeV per nucleon) we may anticipate the use of the free nucleon-nucleon
t-matrix as a complex effective interaction; a representation of this similar to that used here for
the G-matrix has already been applied successfully to nucleon scattering [157]. Finally, it would
be much more satisfactory if we could also base the imaginary potential upon microscopic calcula
tions (see [144] for example) rather than treat it phenomenologically as was done here.
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Appendix A: Spin and isospin effects in folded potentials

An interaction in the form of eq. (6) can give rise, in some circumstances, to both a spin- lnd
an isospin-dependent folded potential. Here we show that these terms are usually quite small.

Consider isospin first and two spherical even-even nucle~ each with the spins of their constituent
nucleons paired off. We can rewrite eq. (5) in a form which better displays the role of isospin as

UF(R) = fdr1fdrz [PlpPZpV pp + PlpPZnVpn + PlnPZnVnn + PlnPZpVpn ] (A.i)

where, for example, Pip is the proton point-density (as a function of r i) of nucleus Ai and vpp is
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the spin-independent part of the proton-proton interaction. In terms of eq. (6)

(A.2)

and

Pi = Pip + Pin'

Using these relations, UF can be re-expressed as

UF(R) = fdr1 f drz [VOOP1PZ + V01 (P1n - P1p)(PZn - PZ p)]' (A.3)

(A.4)

Although the assumption Pn = (N/Z)p p is certainly suspect, it does provide a rough estimate of
the isospin-dependent term. For most colliding systems, the coefficient of VOl is small. For example,
in the case of 13C + z07Pb, the term in square brackets becomes VOO + 0.016v01' From eq. (22)
most realistic interactions satisfy Vo dvoo ~ - 0.5 with the result that the isospin-dependent term
is ~ 1%of the VOO term and typically has the opposite sign. An explicit calculation using the inter
action in eqs. (10) and (21) has been made for this system. The isospin-dependent term is found to
reduce the magnitude of UF(R) at the strong absorption radius, R ~ 12.3 fm, by ~2~~ which is
negligible, considering the other uncertainties. The VOl term allows the possibility of charge
exchange reactions also; of course, VOO does not contribute to these. However, the estimate just
presented does imply that the cross section for such reactions should be quite small.

For elastic scattering, the spin-dependent parts (~0'1 • O'z) of the central interaction (6) will only
survive in the folded potential for those colliding systems in which each nucleus has a non-zero
angular momentum. (Hence, for example, these parts could not be invoked to explain the anomaly
for the scattering of 6Li from spin-zero nuclei even though 6Li has spin-one.) The spin angular
momentum transfer is uniquely S = 1 for these interaction terms [46, 146]. Then parity conserva
tion precludes a total angular momentum transfer of 0 to either nucleus when the spin-spin
interaction acts in first order [46, 146]. Consequently, the contribution of these terms to the
cross section is incoherent with the predominant ones from the monopole Coulomb and nuclear
interactions; there is no interference to this order [46, 146].

Further, only a few unpaired nucleons in each nucleus contribute to the S = 1 potential. How
ever, since the part of the interaction (6) with the longest range, namely the OPEP, has an S = T = 1
nature, we make a rough estimate of its importance. In fig. 2 we showed that when an OPEP-like
interaction is allowed (incorrectly) to act between all pairs of nucleons in the 160 + 6°Ni, it
contributes a potential of about 3 MeV at the strong absorption radius. This potential has an
S = T = 1 character and should not be present for this sytem. However, such a term is allowed
for a system such as 170 + 59CO. If only one odd nucleon from each nucleus contributed, the
strength of this term would be reduced by a factor ~ (A 1A z) to '" 0.003 MeV. This estimate is
probably a lower limit since the odd nucleons participating are the most weakly bound ones and
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typically have mean square radii larger than the nucleus as a whole. However, even if our estimate
were too small by an order of magnitude, the S = I potential would still be only"" 0.03 MeV which
is less than 3%of the S = 0 potential.

In conclusion, it should be quite adequate to ignore the S = 1 and T = 1 contributions to
folded potentials which are used to describe cross sections for elastic scattering or the excitation
of states having natural parity. However, one must treat the S = 1 and T = 1 terms more carefully
when asymmetry, spin transfer, or charge-exchange data are being described. Indeed, when asym
metry data are considered, it is important to include also the nucleon-nucleon spin-orbit inter
action [93, 158J and perhaps treat the exchange terms [158J more carefully as well.

Appendix B: Momentum-space representation

In this appendix we give the basic formulae used to evaluate double folding-model potentials
and transition potentials for elastic and inelastic scattering respectively. These techniques were
incorporated in the computer code DOLFIN, originally written by L.D. Rickertsen. The role of
moments in folding calculations is also emphasized.

B.l. Folding formulae in momentum space

The basic double folding-model formula for local nucleon-nucleon interactions is given by
eq. (5). To evaluate this integral, we use a k-space method similar to those outlined in [33, 159J
(see also [49J where an analytic development is given using Woods-Saxon forms for the densities).
If we denote the Fourier transform of a functionf(r) by

f(k) = f dr exp (ik' r) f(r)

then v(r12) in eq. (5) becomes (see fig. 1)

v(r12) = (271:)- 3 fdk v(k) exp [ -ik' (R + r2 - rdJ

and

(B.3)

(B.4)

with

(jF(k) = fdR exp (ik . R) UF(R) = v(k) i\ (k) pz{ - k).

It is convenient to display the rotational properties of the above densities. The spin-scalar,
isoscalar density is defined by the matrix element

p(r) = <A'I L b(r - ri ) IA),
i

(B.5)

where the sum runs over all nucleons. A' = A yields the ground-state density distribution, while

(B.2)

(B.l)
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N =J:. A gives the transition density for A ~ N. With the multipole expansion of the delta function,
we find

p(r) = L (IA,MAVALMAm) YL~(r) (A'ii Lri-
z 15(r - rJ YL(rj ) IIA),

L i

where the reduced matrix element is as defined by Brink and Satchler [160]. We define

CLPL(r) = (Nil L ri-
z 15(r - rJ YL(rJ II A).

i

(R6)

(B.7)

Here the normalization constant CL is to be chosen later for convenience. Using (Rl) for a parti
cular L from the sum (R6), the transform pappearing in eq. (R3) becomes

p(k) = (IA,MA,11ALMAm) iLCL pdk) YL~(/C) (R8)

with

00

PL(k) = 41tfrZ dr jL(kr) PL(r).

o

With this result, the folded potential (R3) can be expressed as

UF(R;A1~ N1,Az ~ A~) = L (LM!L1Lzm1mZ ) (1'lM/1!11L1M1m1)
LL1LZ

(R9)

(RIO)

Here we have used subscript 1 for quantities belonging to nucleus A1 and 2 for quantities belonging
to nucleus A z. The potential (RIO) contains contributions in which both the multipoles L1 and
Lz may be non-zero. It includes as special cases mutual excitation (both nuclei excited, N1 =J:. A1

and A~ =J:. Az), single excitation (one nucleus excited, N1 =J:. A1 or A~ =J:. Az) and elastic scattering
(A'l = A1, A~ = A z). Also in eq. (RIO) we have

(Rll)

(R12)

Here v has been assumed to be a scalar in coordinate space and x = (2x + 1)1/Z. It is convenient
to choose the CL factors to be

_ {(41t)l/Z if L = 0
CL - 0 if L =J:. O.

With this convention Uo(R) is the spherical part of the optical potential and PL(r) with L = 0 is
the ordinary density for a nucleus of spin zero. In the most common case of single excitation of a
spin-zero nucleus induced by an ion with zero spin, eq. (B.ll) becomes especially simple. For this
we have 1~ = 1z = Lz = 0, say, and 11 = 0, 1'1 = L 1 = L. Then

UF(R) = CL UL(R) YL~(l~)
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and

(Rl3)

(R14)

The potentials for elastic scattering discussed in this paper correspond to L = 0 in this equation.
If we make the associations: Sa = 1l' Sb = 1'1' JA = 1Z' JB = 1;, L = L, S = L 1 and J = L z,

we may identify the form factor GLsAr) defined in [146] and often used in DWBA calculations.
In particular,

G (R) - 'L [.1'1 ( )1\ -lj-Lj C U (R)
LLjL2 - 1 L

1
L

z
- L L .

The discussion above has ignored spin and isospin; that is, it is appropriate for the S = T = 0
component Voo. The extension to S = 1 and/or T = 1, analogous to the discussion in appendix A,
is obvious. For example, the operator for electric transitions is

QLM = e L r~ YLM(rp),
p

summed over protons only. We consider this case because we used measured EL transition rates
to normalize our transition densities. The conventional reduced transition probability [148]
is defined as

Applying the analogue of eqs. (B.6) and (R7), this can soon be written

21,+1 If IZB(EL;A -+ A') = 21: + 1 eZ
drr

L
+

z
pp,L(r)

where we assume L =J= 0 and Pp,L is the proton part of the transition density,

PL(r) = pp,L(r) + Pn,L(r).

(R15)

(B.l6)

B.2. Role of moments in k-space folding

In addition to being computationally fast and convenient, the k-space formulae also provide
a number of useful relations [151] involving the moments of the densities and potentials. In
particular, the small-k limit of (BA) gives

(R17)

where JoU) is the volume integral of the function f. This result is only useful when Pl' pz and v
are all scalars. When P1 and v are scalars while pz oc YL~ (as is the case for single excitation),
the small-k limit gives

(R18)
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where
00

JL(fL) = 4nfdrrL
+

ZfL(r)

o

(B.19)

and PL and VL are defined in eqs. (B.7) and (B.1l). These equalities and their generalizations [151]
provide useful numerical checks on the calculated folded potentials.

The k-space folding method is also convenient when charge distributions inferred from electron
scattering are to be used for folding. In particular, the pier) appearing in eq. (5) are distributions
of the centers of mass of the nucleons (often called "point-densities") whereas one obtains charge
densities (and transition densities) from electron scattering. These are related in k-space by

(B.20)

(B.2l)

(B.22)

where nand p denote nuclear point densities to be used in (B.3), Pch(k) is the Fourier transform
of the nuclear charge density and PN and Pp are the Fourier transforms of the charge distributions
of the neutron and proton, respectively. If it is assumed that Pn ~ (N/Z)pp as is often done for
nuclei with N ~ Z, the proton and neutron point densities appearing in eq. (B.1l) are readily
found from

Pp = ~ Pn = PchI(pp + ~ PN),

so that unfolding the finite-sized charge distributions of the nucleons is a simple operation of
division in k-space. We have used an exponential form for P = Pp + (N/Z)PN'

oc3 oc4

per) = 8n e-<Xr; p(k) = (ocZ + kZf;

which has <rz) = l2/ocz. Then ex was chosen so that (see section 3.4.1)

<rz ) = 0.76 - 0.11 (N/Z) fmz.

The k-space formulae also may be used to estimate changes in the folded potential due to small
variations in the densities and in the nucleon-nucleon interaction. To the extent that these varia
tions are small and predominantly characterized by changes in the mean square radii, we may
use the relation obtained by expanding to order kZ

• For scalar functions (L = L l = L z = 0) this is

(B.23)

where Pl' Pz and v are to be regarded as reference distributions and I b <rz) denotes the sum of
the changes in their mean-square radii. The corresponding change in VCR) is then characterized
by

00

:~;~1 = - l2~Z fk
4

dkjo(kR) v(k) pl(k) pz(k).

o
This gives

aVeR) 1 aZV(R) 1 aVeR)
a <rz) = 6 aRZ + 3R aR'

(B.24)

(B.25)
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densities (and transition densities) from electron scattering. These are related in k-space by

(B.20)

(B.2l)

(B.22)

where nand p denote nuclear point densities to be used in (B.3), Pch(k) is the Fourier transform
of the nuclear charge density and PN and Pp are the Fourier transforms of the charge distributions
of the neutron and proton, respectively. If it is assumed that Pn ~ (N/Z)pp as is often done for
nuclei with N ~ Z, the proton and neutron point densities appearing in eq. (B.1l) are readily
found from

Pp = ~ Pn = PchI(pp + ~ PN),

so that unfolding the finite-sized charge distributions of the nucleons is a simple operation of
division in k-space. We have used an exponential form for P = Pp + (N/Z)PN'

oc3 oc4

per) = 8n e-<Xr; p(k) = (ocZ + kZf;

which has <rz) = l2/ocz. Then ex was chosen so that (see section 3.4.1)

<rz ) = 0.76 - 0.11 (N/Z) fmz.

The k-space formulae also may be used to estimate changes in the folded potential due to small
variations in the densities and in the nucleon-nucleon interaction. To the extent that these varia
tions are small and predominantly characterized by changes in the mean square radii, we may
use the relation obtained by expanding to order kZ

• For scalar functions (L = L l = L z = 0) this is

(B.23)

where Pl' Pz and v are to be regarded as reference distributions and I b <rz) denotes the sum of
the changes in their mean-square radii. The corresponding change in VCR) is then characterized
by

00

:~;~1 = - l2~Z fk
4

dkjo(kR) v(k) pl(k) pz(k).

o
This gives

aVeR) 1 aZV(R) 1 aVeR)
a <rz) = 6 aRZ + 3R aR'

(B.24)

(B.25)



G.R. Satchler and WG. Love, Folding model potentials from realistic interactions for heavy-ion scattering ~4l)

Near the important strong absorption radius, U may be roughly characterized as a decaying
exponential""'" e-Rja. giving

aU(R) ~ U(R) [1 _2exl ~ U(R). (R26)
a<r2

) 6ex 2 RJ 6ex2

A typical value of ex is 0.65 fm (see table 3); in this case we would have bUIU ~ OAb <r2
) if <r2

)

were expressed in fm 2
• Thus, once U(R) is calculated near the strong absorption radius, changes in

U due to using slightly different densities may be estimated readily by using eq. (R26). For example,
the overall behavior of aUla <r2

) exhibited by the dashed line in fig. 5 is easily estimated in this
way. Figure 3 can be qualitatively understood in the same way. Clearly, those changes in shape
which leave <r2

) unchanged require an extension of this method to higher moments. It is felt
that small changes in <r 2

) occur frequently enough to make the above estimate useful.
A moment expansion like that indicated in eq. (9) is especially simple in k-space if one makes the

replacement

(R2?)

in (Rll), retaining enough moments to achieve the desired accuracy. Although this expansion is
not especially convenient for the interaction in eq. (lO), it could be useful for interactions of shorter
range or for exploring the sensitivity of folding potentials to higher moments.

Appendix C: Density-dependent interactions

Recently, a number [2, 5, 6, 50, 86J of realistic density-dependent interactions derived from
G-matrices have been used in scattering calculations for both light and heavy ions. In a local
density approximation the use of such interactions in double-folding calculations typically
amounts to replacing v(r12) in eq. (5) by v(r12 , p) where P is the density midway between the two
interacting nucleons,

P = Pl(1rt + tr 121) + P2(h - tr 121) (C.l)

and Pi denotes the ground-state density of the ith nucleus. Often v(r12 , p) contains a term propor
tional to some fractional power of P and this makes evaluation of the folding integral of eq. (5)
much more difficult. We have found [39J that the density dependence of v(r12' p) can, for realistic
interactions, be represented well by the exponential form

v(r 12 , p) = vl(r12) + v2(r12) e-/lp • (Co2)

Since the range of the scalar-isoscalar part of realistic interactions is quite short, there should
be little change if we use

(C.3)

instead of the prescription (C.l). (If the results of using these two prescriptions are significantly
different, then doubt is cast on the concept of using a local density approximation.) When this is
done, eq. (C.2) becomes

(CA)
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The factorization of the second term allows the k-space method to retain its simple form. Techni
cally, this is done by replacing pi(rJ by pi(rJ exp [ - PPi(rJ] in eq. (5) (or the corresponding replace
ment of their Fourier transforms in eq. (B.3)) when evaluating the contribution from the second
term on the right of eq. (C.4).

The DDD interaction discussed in section 3.3.3 with which we made some exploratory calcula
tions was treated in this way. The oscillator matrix elements of G(r, p) that we were given [50] could
be represented well by the form (C.2) with P= 41.4 fm 3 and using a sum ofYukawa terms for Vi and
V2 analogous to those used for the M3Y interaction. For example, the S = T = 0 part of this
interaction has

[

e-4r e- 2 .
SrJ

vl(r) = 6839~ - 1887 2.5r MeV,

[

e-4r e- 2 .
SrJ

v2(r) = 6893 -4- - 1938-- MeV,
r 2.5r

which may be compared with the M3Y interactions (IO) and (I 1). The volume integral of Vi is
J 1 = -174.4 MeV fm 3

, that of V2 is J 1 = -205.0 MeV fm 3
• At zero density these result in

Joo(p = 0) = -379.4 MeV fm 3
, while at "normal" density, P = Po ~ 0.17 fm- 3

, the V2 term con
tributes almost nothing so that Joo(p = Po) = -174.6 MeV fm 3

. Single-nucleon exchange was
included by using the (density-independent) zero-range pseudo-potential of eq. (I5) normalized
by comparison with some "exact" calculations of proton scattering just as with the M3Y inter
action. This resulted in 100 = -213 MeV fm 3

. At a density which is one-third of "normal",
P = tpo, the DDD interaction then has J00 = -194 MeV fm 3

, or with exchange included,
J~o = -407 MeV fm 3 and a mean square radius (r 2

) = 2.58 fm 2
• These values are almost exactly

the same as for the density-independent M3Y interaction.
Very recently [86], calculations have been made with an interaction which include a density

dependent factor exp (- rxp) in the Vi term as well. A form [57] very similar to eq. (C.2) has also
been used to estimate the effects of single-nucleon exchange in the Slater approximation; it can
be handled in the same way.
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